
Fast Reoptimization with only a few Changes –
Enhancing Tactical Traffic Engineering with

Segment Routing Midpoint Optimization
Alexander Brundiers Student Member, IEEE, Timmy Schüller , Nils Aschenbruck Member, IEEE

Abstract—Recent advancements in the context of Segment
Routing (SR) have shown that the Midpoint Optimization
(MO) concept enables a substantial reduction in the number
of SR policies required to implement Traffic Engineering (TE)
configurations. In this paper, we demonstrate that this concept
can also be applied to the use case of tactical TE to considerably
reduce the number of network changes required to react to
critical events, thereby facilitating lower provisioning times and
a generally improved time-to-repair. For this, we develop MOLS,
a Local Search-based optimization routine that is able to provide
close to optimal solutions within just a couple of seconds. The
latter is shown based on extensive evaluations featuring various
real-world topologies, including data from the backbone of a
Tier-1 Internet Service Provider. Compared to state-of-the-art
approaches relying on conventional SR, MOLS achieves similar
or better solution quality while requiring substantially fewer
configuration changes to implement the respective solutions. Fur-
thermore, MOLS is able to resolve over 99% of overutilization
scenarios resulting from different failure types, mostly within
sub-second fashion and with an exceptionally small number of
changes. Lastly, we also extend MOLS to adhere to specified
latency bounds while even fixing initially violated ones.

Index Terms—Segment Routing (SR), traffic engineering,
optimization, failure recovery

I. INTRODUCTION

Being able to quickly address and resolve critical network
events resulting from failures or unforeseen changes in traffic
is a crucial requirement for operators. The lower the overall
time-to-repair the better, as even rather short disruptions
in service and availability can result in a deterioration of
customer satisfaction or considerable monetary losses [2].
With this in mind, a family of Traffic Engineering (TE)
approaches [3], [4], [5], [6], [7], [8], [9], [10] aims to
proactively hedge networks against such events by computing
TE configurations that are intrinsically resilient against a
specified set of failures or traffic changes. This reduces
the time-to-repair to basically zero (or only the respective

This is an extended version of a paper previously presented at the
IFIP Networking Conference in June 2023 [1]. (Corresponding author: A.
Brundiers)

A. Brundiers and N. Aschenbruck are with the Institute of Com-
puter Science, Osnabrück University, 49069 Osnabrück, Germany (e-mail:
brundiers@uos.de; aschenbruck@uos.de)

T. Schüller is with Deutsche Telekom Technik GmbH, 48155 Münster,
Germany (e-mail: timmy.schueller@telekom.de)

network convergence time) since no changes or adaptions
are required. However, such approaches feature one key
weakness: It is basically infeasible to find configurations that
are sufficiently resilient against all possible scenarios, both
due to the enormous computational complexity but also since
such solutions simply do not exist in most cases. Hence,
such approaches can only be utilized to hedge a network
against a selected subset of scenarios (i.e. the most probable
or most severe ones). In order to deal with scenarios not
covered by such a preemptive optimization, other reactive
approaches are required that are able to quickly come up with
a set of changes that restore a proper network state. In this
context, the primary focus is often put on fast computation
of the respective solution. While this is undeniably important,
the time required to actually roll them out into the network
should be considered as well. Obtaining a solution in sub-
second fashion is less helpful if it takes minutes to deploy
due to an (unnecessarily) high number of required changes.
Thus, approaches developed for an application in such tactical
TE [11] scenarios often aim to also keep the number of
required changes to a minimum [12], [13], [14]. This is not
only helpful when it comes to raw deployment times, but also
makes it easier for human experts to verify the correctness and
validity of said changes before rolling them out. The latter is
highly relevant for many operators that often are hesitant to
carry out updates without such a sanity check [12], [15] since
accidental misconfigurations can have even more detrimental
effects than the respective failure or traffic change event.

Over the recent years, Segment Routing (SR) has become
the premier technology choice across many networks [16]
and received a lot of attention, both from research [17]
and industry. As a result, there already are multiple SR-
based algorithms addressing the use case of tactical TE
by allowing to compute suitable TE configurations within
a couple minutes [13] or even in sub-second fashion [14].
However, all of them rely on conventional end-to-end (E2E)
SR that only utilizes SR policies as end-to-end “tunnels” for
individual demands. Recent studies [18], [19] have shown
that, in the context of strategic TE, the latter often results
in unnecessarily high policy numbers which can be sub-
stantially reduced when utilizing the Midpoint Optimization
(MO) concept. This is enabled by the latter allowing multiple

https://orcid.org/0000-0002-3166-0170
https://orcid.org/0000-0003-2466-3231
https://orcid.org/0000-0002-5861-8896

demands to be routed via a single SR policy (i.e. using well-
known steering approaches like IGP Shortcut [20]) instead of
having to configure a dedicated SR policy for each demand
that has to be detoured. Its ability to substantially reduce
the number of policies required to implement TE solutions
render MO an interesting option for tactical TE use cases,
as well. However, until now, it has only been studied in the
context of strategic TE and long term network optimization.
Thus, existing algorithms generally require up to multiple
hours to compute solutions, especially for larger networks.
This renders them completely unsuitable for the use case of
tactical TE and its tight time constraints.

In this paper, we are the first to address this research gap by
studying how to apply the concept of SR MO to the use case
of tactical TE within tight time constraints, demonstrating that
it can provide considerable benefits for the latter. Thereby, our
main contributions can be summarized as follows:

• We utilize the well-known concept of Local Search (LS)
to develop MOLS, the first MO-capable SR optimization
algorithm suitable for the use case of tactical TE.

• In an extensive evaluation featuring various real-world
topologies, including those of a Tier-1 Internet Service
Provider (ISP), we show that MOLS is able to achieve
close to optimal solutions within seconds, that come
close to those of state-of-the-art MO algorithms that
require magnitudes higher computation times.

• Comparing MOLS to state-of-the-art tactical TE ap-
proaches relying on E2E SR reveals that it is able to
achieve solutions of similar or even better quality while
simultaneously facilitating substantial reductions (of up
to 99%) in the number of required policies. The latter
facilitates faster deployment and verification times and,
thereby, an improvement of the overall time-to-repair.

• We also demonstrate that MOLS resolves over 99% of
overutilization scenarios resulting from different failure
types or traffic changes, with most solutions being com-
puted in sub-second fashion and requiring only a double
or even single digit number of changes to the network.

• We propose an extension for the MOLS algorithm
that allows further operational requirements (i.e. latency
bounds) to be taken into account during optimization.
This extension not only prevents the introduction of
new latency bound violations but is also able to fix the
majority of initially existing ones while having negligible
impact on solution quality and policy numbers.

The remainder of the paper is structured as follows. First,
Section II introduces relevant fundamental concepts and back-
ground information required for understanding this paper,
followed by a discussion of related work in Section III.
The MO variant of the SR TE Problem (SRTEP) that we
aim to solve in this paper is formally described in Section
IV, together with further relevant operational requirements
to consider. Section V describes our MOLS algorithm pro-

posed to address the above problem. After this, Section VI
introduces our evaluation setup and evaluation results are
presented in Section VII. Finally, we also examine how
to integrate further real-world constraints into the MOLS
algorithm, before concluding the paper in Section IX.

II. SEGMENT ROUTING & MIDPOINT OPTIMIZATION

Segment Routing (SR) [21], is a modern source-routing
architecture that allows to control a packets path through the
network. This is done with so called SR policies [22] which
apply a stack of labels (so called segments) to packets steered
onto them. These labels function as waypoints that have to
be visited in the given order, with the paths between them
being determined by the respective Interior Gateway Protocol
(IGP). There are different types of segments. Originally, they
mostly corresponded to the nature of the related waypoint (i.e.
node, adjacency, and service segments) but, over time, this
list was extended with segments referring to more complex
instructions as well [22]. Despite the plethora of available
segment types, most of the SR TE literature (e.g., [3], [13],
[14], [23], [18]) focuses solely on the use of a limited number
of node segments. While this, in theory, restricts traffic steer-
ing capabilities, it has been shown that near-optimal results,
in many cases, can already be achieved with just two node
segments [3], [23], [19]. Additionally, not relying on other
types, like adjacency segments, yields other benefits as well
(e.g., implicit support of Equal Cost Multipath (ECMP) and
generally lower optimization complexity). For these reasons,
we also focus our considerations on SR with at most two
node segments in the remainder of this paper. Furthermore,
similar to other works [23], [13], we also prohibit arbitrary
traffic splitting over multiple SR paths, as this is generally
not implementable in practice due to hardware limitations
[23]. Overall, SR can be used to implement virtually arbitrary
forwarding path while providing considerable benefits re-
garding overhead and scalability over comparable expressive
traffic steering techniques like Multiprotocol Label Switching
(MPLS) with Resource Reservation Protocol (RSVP)-TE [24]
This has lead to SR becoming the premier technology choice
for many operators [16] and a plethora of research being
conducted in this area. For an overview of the latter, we refer
to corresponding surveys like [25] or [17].

In literature, SR is almost exclusively considered in an E2E
fashion, with each SR policy being dedicated to route the
traffic between just one pair of nodes, its respective start- and
endpoint. Other demands that do not originate/end at these
nodes but just visit them in transit will not be steered onto the
policy. However, from a technical perspective, SR can actually
be used in conjunction with other steering mechanisms as
well. For example, [22, Sec. 8.7] suggest the use of IGP
Shortcut [20] to determine whether a packet is steered onto
an existing SR policy, which is already supported in the
most recent hard- and software releases of some of the

large vendors [26], [27]. This overall concept of stepping
away from the E2E nature of conventional SR and allowing
other steering mechanisms to be used is often referred to
as Midpoint Optimization (MO) [18], [19], [26], as it allows
traffic to be detoured (or “optimized”) at arbitrary midpoints
along its path through the network, instead of only its ingress
node. While this gives up on the fine-grained, per-flow traffic
control of E2E SR, it has been shown that MO still allows
for virtually optimal TE solutions that are on-par with those
of conventional E2E SR approaches [18], [19]. In fact, if the
number of segments is limited, MO even bears the potential
to improve solution quality by “mimicking” higher segment-
number paths via a concatenation of multiple MO policies.
Furthermore, MO can also facilitate TE configurations that are
more robust against failure or traffic change events than those
obtainable with E2E SR [10]. Most importantly, however,
utilizing MO allows for a substantial reduction in the number
of SR policies that are required to implement TE solutions
as it eliminates the need to configure individual policies
for each demand that has to be detoured. The latter is
particularly important for many operators as it reduces the
introduced overhead while also generally improving clarity
and maintainability of the network.

The MO concept can be implemented using different traffic
steering mechanisms. However, in this paper, we limit our
considerations to the IGP Shortcut approach, as it is already
supported in recent router hard- and software and considered
in related work [18], [19]. Using IGP Shortcut, a packet is
steered onto an SR policy if the policy tailend is a downstream
router with respect to the IGP path from the policy headend to
the packets destination. In order to efficiently prevent loops,
packets that already are “inside” of a policy will also not be
steered into other ones encountered along the way [27].

III. RELATED WORK

As already mentioned in the introduction, there are basi-
cally two categories of approaches when it comes to dealing
with failures or changes in traffic: proactive and reactive
ones. Since it is generally not feasible to proactively hedge
a network against all possible scenarios, the former can only
be applied to cover a certain subset of events, leaving a need
for reactive approaches to be able to deal with the uncovered
ones. This also applies to approaches like Sentinel [28] that
rely on precomputing backup paths for certain failures that
are automatically activated if the respective failure occurs. As
there are exponentially many failure scenarios, it is generally
infeasible to precompute individual backup paths for all
of them. Nonetheless, this general concept can be used to
establish fast-reroute mechanisms like Topology Independent
Loop Free Alternate (TI-LFA) [29] (or more historically [30])
which allow to locally steer traffic away from a failed link
and onto the expected post-convergence path until the network
reconverges. Such approaches, however, only aim to minimize

disruption during the network convergence stage and do
not provide any benefits or protection against overutilization
afterwards. Thus, such fast-reroute mechanisms do not replace
TE algorithms that allow for a fast (global) re-optimization
of a network but can be applied complementary to them.

When it comes to fast re-optimization of segment-routed
networks, there are two prevalent state-of-the-art approaches.
The first one is the Declarative and Expressive Forwarding
Optimizer (DEFO) [13]. It is an optimization architecture
designed for the use in large carrier-grade networks. It allows
operators to specify various goals or cost-functions that the
network should be optimized for. Those optimization prob-
lems are then solved by a heuristic optimization algorithm
based on Constraint Programming (CP) [31]. While the
CP approach itself could theoretically provide truly optimal
solutions, it often requires a lot of time to do so (especially
on large networks). For this reason, DEFO does not solve the
CP problem to optimality but uses an LS-based heuristic to
explore the search space more efficiently. This allows DEFO
to adhere to the timing constraints of tactical re-optimization
by providing reasonably good solutions within minutes or
seconds instead of hours. The second algorithm is Segment
Routing Local Search (SRLS) [14]. It aims for true sub-
second optimization to enable an immediate, automated re-
optimization of the network in the case of failures or unex-
pected traffic changes. The required, exceptionally low com-
putation times are achieved by utilizing a heuristic approach
based on LS that iteratively inserts new SR policies into the
network to bring down the Maximum Link Utilization (MLU).
This enables SRLS to remove congestion in a sub-second
fashion for many networks, being significantly faster than
DEFO and related Linear Program (LP)-based approaches.

While both of the above approaches achieve very good
optimization results within short amounts of time, a sub-
stantial number of policies is often required to implement
their solutions (cf. Section VII-A), which negatively impacts
provisioning times. The high policy numbers mainly result
from the fact that both approaches rely on conventional E2E
SR which requires a dedicated policy to be installed for each
demand that has to be detoured. Especially in large networks
with multiple tens of thousands of demands, this can quickly
lead to rather high policy numbers even if only a small
percentage of demands has to be rerouted. Recent results [18],
[19] have shown that this issue can be addressed by stepping
away from the use of E2E SR and instead utilizing the concept
of MO. However, the only existing optimization algorithm
that currently supports MO is Shortcut 2SR (SC2SR) [18],
which is designed for strategic, long-term optimization. As
such, it often exhibits computation times in the range of
multiple hours, especially for larger networks, even when
deploying certain preprocessing approaches to further speed
up computations [32]. This renders it completely unsuitable
for the use case of tactical TE and fast re-optimization as we
consider them them in this paper. Additionally, SC2SR only

solves a restricted version of the MO optimization problem
in which certain practically feasible policy configurations are
artificially prohibited in order to allow for an efficient LP
formulation (cf. [18], [19, Sections IV-A and V-B]). There
are scenarios in which these artificial restrictions result in
the algorithm not being able to find the optimal solution but
an arbitrarily worse one instead. Contrary to this, the MOLS
algorithm proposed in this paper does not suffer from such
limitations and is the first one in literature to fully utilize the
capabilities of MO.

IV. PROBLEM STATEMENT

In this section, we formally define the optimization problem
addressed in this paper while also specifying operational
requirements for an optimization algorithm to be applicable
for the use case of tactical TE.

A. The MO SR Traffic Engineering Problem

The MO variant of the SRTEP considered in this paper is
rather similar to the E2E variant [33] with the only major
difference lying in the deployed traffic steering approach.
Instead of using SR policies in E2E fashion, we utilize the
IGP Shortcut mechanism (cf. Section II) to determine whether
a demand is steered onto a policy or not. Thus, the general
optimization problem can be defined as follows. Given a
network topology as a directed graph G = (V,E) with V
and E being the sets of nodes and edges, respectively. Each
edge e ∈ E is annotated with a capacity ce and an IGP metric
value me, the latter being used to determine the shortest paths
between nodes. Furthermore, a set of demands D is given,
with each individual demand d = (i, j) specifying the amount
of traffic tij that has to be routed from node i to j. The goal
is to find a set P of SR policies that, assuming traffic is
steered onto them according to the IGP Shortcut mechanism,
minimizes the resulting MLU in the network:

min max
e∈E

(
loade(P)

ce

)
(1)

Like the E2E version of the SRTEP [33], this problem is
NP-hard when imposing the integrality constraint1 for traffic
flows, as we show in Appendix B.

B. Operational Requirements for the Use Case of Tactical TE

The previous definition only describes the general opti-
mization problem of minimizing the MLU using SR MO.
Regarding the use case of tactical TE considered in this
paper, there are additional peculiarities and (operational)
requirements to consider. First of all, full-on optimality of
a solution is generally not required as long as it is sufficient
to resolve the respective issue (i.e. overutilization). Instead,

1Meaning that a demand is not allowed to be split over multiple “parallel”
policies. ECMP-related splitting, however, is allowed.

timeliness of a solution basically becomes the most important
factor, as issues (i.e., resulting from failures or unexpected
traffic changes) need to be resolved as fast as possible to
quickly restore proper operability of the network [11], [15].

In this context, the primary focus is generally put on
fast computation of the respective solutions. While this is
undeniably important, the time required to actually roll them
out into the network must be considered as well. Obtaining
a solution in sub-second fashion is less helpful if it takes
minutes to deploy due to an (unnecessarily) high number of
required changes. Thus, approaches developed for tactical TE
applications should aim to also keep the number of required
changes to a minimum [12], [13], [14]. This not only keeps
provisioning times low, but also makes it easier to verify the
correctness and validity of said changes (i.e. regarding their
conformance to the respective design and operation principles
of the network) before rolling them out [12] [15, col. 9].

The latter is especially important in the context of ISP
networks which can (at least to a certain extent) be considered
as critical infrastructure and, thus, are run with particularly
strict requirements and regulations regarding availability and
reliability of service. As a result, their operators are often
rather hesitant to deploy automated TE systems that dynam-
ically reconfigure the network in fully autonomous fashion,
since an accidental network misconfiguration carried out by
such a system can potentially have much more detrimental
effects than the initial failure or traffic change event. Instead,
they often rely on a human-in-the-loop for checking and
validating the recommended changes prior to rolling them
out into the network [12] [15, col. 9].

So, in the context of tactical TE, reasonably good solutions
do not only need to be computed quickly but also have to
implementable with only a small number of changes to the
network, in order to ensure that they can be verified and rolled
out fast as well, as the latter aspects also contribute to the
overall time-to-repair.

V. ALGORITHMIC APPROACH

The MO SRTEP being NP-hard means that there (most
likely) is no efficient way to optimally solve this problem
in reasonable time, especially not within the tight time con-
straints of tactical TE. Therefore, we base our algorithmic
approach on the well known heuristic concept of Local
Search (LS) [34], which has already been shown to provide
exceptional results in combination with other TE approaches
like IGP metric tuning [12] and even conventional E2E SR
[14], [13]. In the following, we describe the relevant aspects
of our proposed Midpoint Optimization Local Search (MOLS)
algorithm, like the chosen neighborhood, its exploration strat-
egy and how we carry out an efficient move evaluation.
For a better understanding, Fig. 1 also provides a simplified
high-level visualization of the general MOLS optimization
procedure and where in this section to find details on the
respective aspect of the algorithm.

Initialize solution

Stop-Criterion

met?

getNextMove()

Reset,
revert, or restart

required?

Carry out reset/
revert/restart

Postprocess
result

Return solution

Applicable
move found?

applyMove()

yes

START

END

no

yes

yes

no

no

A

EE

C

D

C D
B

Figure 1: High-level visualization of the general Midpoint
Optimization Local Search (MOLS) optimization procedure.
The annotated letters in the gray circles indicate in which
subsection of Section V details to the respective part are
explained (e.g., D for Section V-D).

A. Solution Representation & Neighborhood

A solution is represented by the chosen set P of SR policies
to be configured in the network and optimization starts from
an empty policy configuration (P = ∅) in which all demands
are simply routed via Shortest Path Routing (SPR) according
to the IGP. The objective function value associated with a
solution that we aim to minimize is the MLU resulting from
the respective configuration f(P) = MLU(P).

The considered neighborhood consists of two types of
moves, the insertion and removal of policy. These are suf-
ficient to connect the solution space (i.e. guaranteeing theo-
retical reachability of an optimal solution) as every solution
can be obtained from any starting solution by carrying out
a sequence of insertion and removal moves. Since we are
limiting our considerations to policies with at most two
segments (identifiable by the triple of start-, intermediate-, and
end-node), the size of this neighborhood is within O(|V |3).

B. Neighborhood Exploration Strategy

To explore the above neighborhood more efficiently, we
follow an approach similar to the one proposed in [14] to
focus our exploration on candidates that tend to have a higher
chance of resulting in an improvement of the MLU. This is
done by selecting a demand d that puts load on the currently
most utilized edge emlu and evaluating all the possible moves
that would result in (parts of) this demand being detoured
away from emlu. The demand selection is done randomly with

Algorithm 1 GETNEXTMOVE(S,TL) function of the MOLS
algorithm. (S := Current Solution, TL := Tabu-List)

1: move← None
2: // First, check removal neighborhood
3: for policy p ∈ S.GETPOLICIES() do
4: if (p,remove) /∈ TL and f(S \ p) < f(S + move)

then
5: move← (p,remove)
6: // Prefer removal if it improves MLU
7: if f(S + move) < f(S) then
8: return move
9: // Otherwise, check insertion neighborhood

10: edgeMLU, MLU← GETMLUEDGE()
11: for (i = 0; i < ndemand; i++) do
12: d← SELECTDEMAND(edgeMLU)
13: P ← GETCANDIDATEPOLICIES(d, edgeMLU)
14: for p in P do
15: if (p,insert) /∈ TL and f(S + p) < f(S + move)

then
16: move← (p,insert)
17: return move

the probability P (d) of selecting demand d being based on
the amount of traffic load(d, emlu) that the respective demand
puts on emlu using the following formula:

P (d) =

(
load(d, emlu)

Load(emlu)

)α
(2)

where Load(emlu) denotes the total load of edge emlu and α
is a parameter that can be used to adjust how much emphasis
is put on selecting demands that induce a high load on emlu.

During experiments with this approach, we observed that
it is still quite likely that the selected demand is actually
relatively far from being the “optimal” one and that the
best possible move was not in the evaluated set of moves.
To increase the chances of finding the best (or at least a
really good) next move, we select not only one but a fixed
number (ndemand) of demands and evaluate all their respective
move sets and select the most improving move. However,
we always prefer improving removal over insertion moves in
order to keep policy numbers low. For a better understand-
ing, Algorithm 1 provides a pseudocode description of this
neighborhood exploration procedure.

C. Diversification

Only considering improving moves (aka hill climbing)
does not lead to an optimal solution in most scenarios.
Instead, optimization will get stuck at local optima that can
be considerably worse than the true global optimum. In the
context of MLU minimization, such a scenario can arise if
there are multiple edges featuring a utilization equal to the
overall network MLU. Finding a single move that reduces the
utilization of all those edges can be infeasible, especially if

their number is high and they are located in different parts
of the network, leading to the optimization being stuck. To
overcome such issues, our algorithm is allowed to accept non-
improving and even MLU-increasing moves if no improving
moves can be found. The only requirement for accepting such
moves is that they reduce the link utilization of at least one of
the edges with a utilization equal to the current MLU. This
ensures that there is at least some sort of “progress”, even
when accepting a non-improving move. A problem arising
from allowing to accept non-improving moves while also
focusing on improving the MLU whenever possible, is the
fact that the optimization can get stuck in an infinite loop of
carrying out an MLU-increasing move and then immediately
reverting it in the next step as this obviously results in an
MLU improvement. To prevent this, our algorithm utilizes a
Tabu-List [35] as short-term memory to keep track of the
previously carried out non-improving moves and prohibits
their respective inverse moves. The list will be cleared if a
new overall best solution is found.

Due to the above approach, MOLS is able to escape local
optima but there is still a high chance of optimization being
focused on a rather local section of the solution space. In
order to facilitate further diversification, we implement reset
and revert mechanics inspired by those used in [14]. After ap-
plying a certain number of non-improving moves (nreset) that
have not lead to an improvement of our overall best solution,
we perturbate the search by carrying out a reset move that
removes a randomly selected policy from the current solution.
If this does not lead to an improvement of the globally best
found solution after a certain number of iterations (nrevert),
the algorithm reverts back to the best solution found so far
and continues from there. Additionally, we incorporated a
restart functionality. If there is no further improvement after
nrestart reset or revert operations, we consider the optimization
irreparably stuck and start anew. The respective thresholds can
be adapted to fine-tune the algorithm.

D. Move Evaluation

One of the most important aspects of an LS algorithm is
an efficient move evaluation. In the context of conventional
SR as it is used by SRLS, this is rather straightforward
since the insertion or removal of a policy does only impact
the forwarding path of a single demand. When using MO,
however, a policy can, and most often does, route multiple
demands. Hence, inserting or removing a single policy can
alter the path of a multitude of demands in the network. As
a result, the complexity of evaluating a move additionally
depends on the number of demands that are influenced by the
respective policy. In the worst case, it can be up to O(|V |2)
many if the policy impacts a large share of the total demands,
resulting in a substantial increase in the complexity of the
move evaluation when considering MO instead of E2E SR.
Fortunately, this complexity can be considerably reduced by

dsrc h t ddsti1

i2

i3

...

in

headend tailend

possible
intermediate segments

not impacted by
the considered policy

dependent on
intermediate segment

independent of
intermediate segment

Figure 2: Illustration of which parts of the new forwarding
path of a demand d are dependent or independent of the
intermediate segment i when considering the insertion of a
policy with headend h and tailend t as next move.

exploiting certain characteristics of the IGP Shortcut-based
MO implementation considered in this paper.

First of all, since IGP Shortcut is only locally significant2,
a policy can only impact demands that traverse its respective
headend. Hence, the set of demands impacted by the insertion
or removal of a policy can be efficiently derived by keeping
track of the demands passing over each node in the current
solution. Furthermore, due to policies being only locally
significant, the forwarding path of a demand is only impacted
from the respective policy headend onwards. Thus, it is
sufficient to only recompute the forwarding path and resulting
link utilizations starting from the respective policy headend.
Everything “in front” of that stays the same. Most importantly,
however, the latter observation also means that the new sub-
paths to recompute are basically completely independent of
a demand’s source. As a result, all traffic flows that visit
the same node and share a common destination will follow
the same path from there on, irrespective of its source. This
allows us to group such demands into a single “merged” one
for which we then only have to compute the new forwarding
path once, instead of having to carry out computations for
each of the individual demands. This procedure is able to
reduce the number of potential path recomputations per move
evaluation from O(|V |2) to O(|V |). Even though this does
not yet reach the O(1) recomputations required for E2E SR,
it is a notable reduction in complexity and enables very low
computation times as we will see later in the evaluation.

The above considerations mainly focus on making the
individual evaluation of a single move more efficient, but it
is also possible to combine parts multiple move evaluations
to further reduce the complexity of the whole neighborhood
exploration process. This is based on the observation that the
decision to steer a demand onto a policy is independent of
its respective intermediate segment(s). As a result, removing
impacted demands from their “old” path is the same for all
insertion moves that share a common policy head- and tailend.

2Meaning that the existence of the policy is only known to its respective
headend and not propagated to other (neighboring) nodes.

Furthermore, the new subpath from the policy tailend to the
respective destination is also independent of the intermediate
segment, leaving only the traffic forwarding “inside” of the
policy being impacted when varying the intermediate segment
(as schematically illustrated in Fig. 2). These observations
allow us to evaluate insertion moves in badges, grouped by
the head- and tailend nodes of the associated policy. For
each move in a badge, the removal of the “old” traffic and
the new paths “behind” the respective policy is the same
and, thus, has to be computed only once, basically reducing
the number of computations for those from O(|V |) (i.e. for
each intermediate segment) to just a single one. Only the
link utilizations resulting from traffic inside the respective
policy have to be computed and added individually for each
move in the badge. This, however, is rather straightforward
as it only requires to adapt the utilizations on the links of
two concatenated shortest paths whose associated edges and
respective ECMP split-values can be efficiently precomputed.

E. Stop Criteria & Postprocessing

We implemented two possible stop criteria for our algo-
rithm. The first is a simple timelimit that aborts optimization
after the specified time and returns the so far best solution.
The second allows for the specification of a target MLU for
which the optimization will end if it is reached. Furthermore,
during optimization, policies might be selected that do not
contribute anything to the final solution (i.e. by a non-
improving move or due to the policy “losing” its initial
benefit in later steps). Thus, a postprocessing procedure is
invoked after the main optimization loop, which checks for
and removes such “leftover” policies from the solution.

VI. EVALUATION SETUP

To examine the performance of MOLS and, thereby, the
applicability of the MO concept to the use case of tactical TE,
we carry out extensive evaluations regarding different objec-
tives, like achievable MLU, policy numbers, and computation
times, and also compare it against other state-of-the-art SR TE
algorithms. In the following, when considering MLU values,
those are always given relative to the theoretically optimal
solution to also provide a reference on how good a solution
actually is. In this context, a relative value of 1.0 denotes
an optimal solution. The theoretically optimal TE solutions
are computed by solving the respective Multicommodity
Flow (MCF) problem [36, Ch. 4.4]. It should be noted that,
while MCF provides optimal MLU values, its solutions are
generally not deployable in practice due to many real-world
constraints and restrictions being completely ignored (e.g., the
infeasibility of splitting traffic flows in arbitrary fractions).
As a result, MCF should be interpreted as a theoretical lower
bound for a realistically achievable MLU.

Table I: Repetita data distinguished by number of nodes.

Category # of Nodes N # of Instances

Small N < 20 49
Medium 20 ≤ N < 40 88
Large 40 ≤ N 72

A. Data

The evaluation of our MOLS algorithm is conducted on
three different sets of data. The first one consists of data from
the publicly available Repetita dataset [37]. It features various
different real-world network topologies (many of them taken
from the Topology Zoo [38]) with artificially generated3 traffic
matrices for each of the topologies. Since the topologies in
this dataset vary heavily in size (ranging from 4 to 197 nodes),
we subdivided the instances into three categories (small,
medium and large) based on their number of nodes. The
same was done in [14] and we follow the same categorization
for better comparability. The respective node limits as well as
the number of instances in each category are listed in Table I.
We exclude instances for which the optimal MLU is already
achieved by SPR as this renders them uninteresting for TE.

The second dataset is based on real network data collected
during the peak-hour in the backbone network of a globally
operating Tier-1 ISP. It consists of 19 topology snapshots
resembling different expansion states of the network between
2017 and 2021 and the corresponding measured traffic matri-
ces. Depending on the expansion state, the network features
around 100 to 200 nodes and 600 to 1100 edges.

For our third dataset, we follow an approach proposed in
[18] to create (arguably) harder semi-artificial instances from
topology and traffic data that spans multiple expansion states
of the same network across a longer time period. The idea is
based on the observation that network operators continuously
expand their networks to deal with growing traffic. If we
now map more recent traffic data onto the topologies from
previous expansion states of the network, more traffic is
forced through a network with lower capacity, which should
result in harder instances for TE. By using this method, we
additionally created ten new and arguably harder TE instances
from the previously described ISP dataset. In the following,
those are referred to as the ISP Backmapped dataset.

VII. EVALUATION RESULTS

This section presents the results of our extensive evalua-
tions of the MOLS algorithm. All MOLS results are obtained
with the following parameter settings which were determined
based on preceding experiments which we cannot cover here:
α = 1.5, and ndemand = 10, nreset = 20, nrevert = 10, and
nrestart = 10. If not stated otherwise, a timelimit of two
minutes4 is used for all tactical TE algorithms. Evaluation of

3Matrices were generated based on the gravity model described in [39].
4Generally, the faster a solution is computed the better, but this was

identified as an acceptable threshold in consultations with ISP experts.

100 101 102 103 104

Number of Policies

1.0

1.2

1.4

1.6

M
L

U
a
lg

M
L

U
M

C
F

DEFO

SRLS

MOLS lower
is bette

r

Figure 3: Comparison of the MLUs achieved by DEFO,
SRLS, and MOLS for the Repetita (Large) dataset and
the number of policies required to implement the respective
solution. The dashed green and red lines mark the optimal
MCF MLU and the overutilization threshold.

non-deterministic algorithms (i.e. SRLS, DEFO, or MOLS)
are repeated five times and the following results show the
averages across these five runs. All computations are carried
out on a 64-core 3.3GHz machine with 500GB of RAM.

A. How does MOLS perform compared to state-of-the-art
tactical TE approaches relying on conventional E2E SR?

First, we focus on assessing the performance of our MOLS
algorithm compared to DEFO and SRLS, the state-of-the-
art approaches utilizing conventional, end-to-end SR.5 For
this, we compare the optimization results obtained by these
three algorithms within a timelimit of two minutes regarding
the achievable MLU and the number of polices required
to implement the respective solutions. The results for the
Repetita (Large) dataset are depicted in Fig. 3. For each
instance, a point marks the MLU achieved by the respective
algorithm and the number of policies required to implement
this solution. The closer a point is to the bottom left corner,
the better a solution as this resembles achieving (near) optimal
MLUs with a low number of policies.

Achievable MLU: It can be seen that SRLS and MOLS
are able to prevent overutilization for basically all instances
and even achieve virtually optimal MLUs for most of them.
While DEFO also achieves close to optimal MLUs for many
instances, the share of instances with a noticeable difference
to the optimum or even overutilization is considerably larger
than for the other two. When looking at which instances
are solved sub-optimally by DEFO, it becomes apparent
that most of them are among the largest networks in the
dataset, featuring close to 100 nodes or more. This indicates
that, while the heuristic constraint programming approach

5For this evaluation, we use the SRLS and DEFO implementations publicly
available at https://github.com/svissicchio/Repetita.

of DEFO is considerably faster than conventional LP-based
algorithms, it still does not scale well enough to reliably
deliver good solutions for large networks. This might not
appear too detrimental when looking at Fig. 3 as the number
of such really large instances in the Repetita dataset is
rather small (<15%) as it mostly features older networks.
However, this is a bit misleading. Most modern Wide Area
Networks (WANs) or ISP backbones are considerably larger,
encompassing hundreds of nodes, which should considerably
limit the applicability of DEFO for those networks, at least not
within the tight timing constraints considered in this paper.

Policy Numbers: Fig. 3 also shows that, while SRLS and
MOLS are virtually on-par regarding the achievable MLUs,
there are substantial differences in the number of policies
required to implement the respective TE solutions. Many
SRLS solutions lie in the right half of the plot, corresponding
to policy numbers in the range of hundreds or even thousands
(note the logarithmic scale!). In contrast, apart from a few
outliers, virtually all MOLS solutions are located on the
left side, requiring only a double digit number of policies.
The root cause of these differences lies in the fact that
SRLS relies on E2E SR which requires to configure an
individual policy for each demand that has to be detoured.
MO, however, allows to detour multiple demands with a
single policy. Compared to SRLS, this facilitates an average
policy number reduction of around 76% across all instances in
the Repetita (Large) dataset. When only considering
the largest topologies (i.e. |V | ≥ 100), which are of most
practical relevance as detailed before, this even increases to
around 97.5%.

Provisioning Times: Such a substantial reduction in the
number of policies required to implement TE solutions con-
stitutes a notable advantage in the context of tactical TE as it
allows for considerably improved provisioning times, which
we aim to show in the following. Since provisioning times
are generally heavily network dependent (i.e. regarding the
used hard- and software or communication delays), accu-
rately assessing them without such information is virtually
infeasible. However, they can be (roughly) estimated based
on the observation that they scale more or less linearly with
the number of policies to configure [40], with the exact
factor depending on the number of parallel operations that
can be carried out by the respective TE controller. As the
latter can vary substantially between controllers and there
is basically no publicly available information on this topic,
we consider different policies per second (pps) rates, starting
at just 1pps6 going all the way up to a (probably rather
optimistic) rate of 100 pps. The respective approximated
provisioning times for the TE configurations computed with
SRLS and MOLS on the Repetita (Large) dataset are
depicted in Fig. 4. Again, the tail of the distribution is the

6Based on results reported in [41] regarding the configuration of a single
TE tunnel taking up a second or more in a large globally distributed network.

https://github.com/svissicchio/Repetita

10−1 100 101 102 103 104

Approx. Provisioning Time [s]

10−3

10−2

10−1

100

E
C

C
D

F

1 pol
s

5 pol
s

10 pol
s

25 pol
s

50 pol
s

100 pol
s

(a) SRLS.

10−1 100 101 102 103 104

Approx. Provisioning Time [s]

10−3

10−2

10−1

100

E
C

C
D

F

1 pol
s

5 pol
s

10 pol
s

25 pol
s

50 pol
s

100 pol
s

(b) MOLS.

Figure 4: ECCDF of the approximated provisioning times
required to roll out the TE configurations computed for the in-
stances in the Repetita (Large) dataset with SRLS and
MOLS for different policies per second values. The vertical
dashed blue and red lines mark 1s and 120s, respectively.

most relevant part as it resembles the provisioning times for
the largest networks, which come closest to the size of today’s
WANs and ISP backbones. It can be seen that the substantial
reduction in policy numbers that can be achieved when
utilizing MO instead of E2E SR also facilitate a considerable
improvement in provisioning times. While MOLS solutions
can be configured in less than 60s, even for rather low pps
values, SRLS solutions can still take over two minutes to
configure, even for rather high pps values (50pps). For lower
values, this can go up to five or even more than ten minutes.
In the context of tactical TE, where the main objective is to
restore proper network functionality and service as quickly as
possible, such high provisioning times impose a considerable
limitation. Furthermore, what has not been taken into account
yet is the time required by human experts to check and verify
a selected solution before rolling it out. This is even harder
to quantify but it should be easily comprehensible that it is
considerably more cumbersome and, thus, time consuming to
check hundreds or even thousands of changes instead of just
a couple tens.

For reasons of space, we cannot provide figures for the
two ISP datasets, but those results are qualitatively simi-
lar if not better than what we have already seen for the
Repetita data. MOLS achieves virtually optimal MLUs in
sub-second fashion for all instances, again being on-par with
SRLS while outperforming DEFO. However, while the latter
require hundreds and often even thousands of policies, MOLS

achieves these results with only a couple tens of policies,
corresponding to an average reduction of around 99% and
facilitating a substantially faster verification and deployment.

B. How fast can MOLS resolve overutilization scenarios?

While, in most TE contexts, solution quality/optimality is
considered one of, if not the most important objective, this
changes to a certain degree when looking at the use case
of tactical TE. Here, timeliness is generally more important
while solutions only have to exhibit a certain level of quality,
the latter mainly referring to it being able to restore proper
network service. Thus, we also examine MOLS regarding the
time taken to resolve overutilization resulting from traffic
changes or failures and the number of polices (or policy
changes) required to do so.7 In the following, we again use a
maximum time limit of two minutes. Furthermore, scenarios
that do not result in overutilization or are generally not
solvable with any kind of TE (indicated by having an MCF
MLU > 1.0) are not included in the results.

1) Traffic Changes: The first class of scenarios that often
cause overutilization on certain links are unforeseen changes
in traffic. This can be general changes in traffic characteristics
or so called called traffic surges, in which the amount of
traffic that passes through a network increases drastically
within a short time-frame (e.g., caused by large sport events
or the release of a highly anticipated game or TV series).
Obtaining real-world data related to such traffic change events
proves to be difficult as operators are generally hesitant
to share network information, especially of such critical
events. However, a major change in traffic characteristics is
basically synonymous with having to optimize a network for
a completely new traffic matrix. Hence, the performance of
MOLS for such a use case can be assessed by examining its
ability to resolve overutilization resulting from a new traffic
matrix presented to it. This is done for all three of the Repetita
datasets. To imitate the behavior of traffic surges, we utilize
our ISP Backmapped dataset which basically forces more
traffic though the network than expected during its design.8

The respective optimization times required by MOLS to
resolve overutilization in these scenarios are depicted in
Figure 5a. The dashed blue line denotes the one-second
threshold, while the upper red line indicates our maximum
timelimit of two minutes. Every instance that could not be
brought below the overutilization threshold within this time
is placed on the red line. It can be seen that MOLS is
able to resolve overutilization in sub-second fashion for all
traffic surge events and virtually all of the traffic change
events on the small and medium sized Repetita instances.
While, for the larger instances, there are a few more outliers

7The DEFO and SRLS implementations do not support the specification
of a target MLU. Hence, a similar, in-depth analysis is not feasible for them.

8The ISP Original dataset is not considered here, since it does not
contain any instances that exhibit overutilization of any link.

Changes Surges
Rep.(S) Rep.(M) Rep.(L) ISP (BM)

Traffic Event & Dataset

10−1

100

101

102

O
p

ti
m

za
ti

o
n

T
im

e
[s

]

(a) Optimization time.

Changes Surges
Rep.(S) Rep.(M) Rep.(L) ISP (BM)

Traffic Event & Dataset

100

101

102

N
u

m
b

er
of

P
ol

ic
ie

s
(b) Policy numbers.

Figure 5: Distributions of the optimization time and number of
policies required by MOLS to resolve overutilization resulting
from different traffic change scenarios.

that require a couple of seconds to compute, the majority
can still be resolved in sub-second fashion, as well. Overall,
MOLS is able to resolve overutilization in less than a second
for 169 out of the 190 considered Repetita instances (i.e.
89%). When given up to two minutes, this number increases
to around 97%, superseding the results of both DEFO and
SRLS, which are only able to do so for around 86% and
93% of instances, respectively. Fig. 5b also shows that, apart
from a few outliers, the respective TE configurations can be
mostly implemented with only a low double digit number of
policies. This means that MOLS is not only able to quickly
find suitable configurations but those can also be rolled out
within reasonable time (i.e. a couple of seconds).

2) Failures: The second class of scenarios that tactical
TE algorithms frequently have to deal with are hardware
failures. In this paper, we focus on the three failure types
which are also mainly considered in literature: Link, node,
and Shared Risk Link Group (SRLG) failures. The first two
correspond to an outage of the respective link or router,
while the latter resemble the simultaneous failure of multiple
hardware components that share a common risk of breaking
(i.e. links running through the same conduit or connected
to the same linecard). We evaluate the ability of MOLS
to deal with overutilization resulting from such failures by
failing the respective components and optimizing the result-
ing scenario with MOLS in order to remove (potentially
occurring) overutilization. For the examination of SRLG
failures, detailed information on the respective SRLGs of the
considered network are required. We obtained real SRLG data
for our ISP Original and ISP Backmapped datasets
but, for the Repetita dataset, such information is not available.
As it also cannot be reliably inferred from just the network
topology, we limit our evaluations on the latter dataset to just
link and node failures.

To judge the ability of MOLS to deal with the above failure
scenarios, we first look at the percentage share of scenarios for
which it is able to find an SR configuration that removes any
overutilization within the two minute timelimit. An overview
of this is provided in Table II together with the respective

Table II: Percentage of overutilization scenarios resulting
from different failure types that can be resolved by MOLS
within at most two minutes of computation time. Failure sce-
narios that do not result in overutilization or that are generally
unsolvable via TE are not taken into account. The respective
distributions of the percentage of resolved scenarios for each
instance are depicted in Fig. 12 in Appendix C.

Overutil.-Scenarios Fixed by MOLS [%]

Dataset Failure min max median min max median avg

ISP (Orig.)
Link 1 12 3 100.0 100.0 100.0 100.0
SRLG 6 88 37.5 79.1 100.0 100.0 98.7
Node 2 24 11 92.9 100.0 100.0 99.6

ISP (Back.)
Link 594 748 731 99.2 100.0 100.0 99.9
SRLG 183 385 298 97.4 100.0 100.0 99.6
Node 66 92 83 90.1 100.0 98.7 97.8

Repetita (L) Link 1 449 126 1.7 100.0 100.0 96.1
Node 2 174 48.5 11.7 100.0 100.0 96.9

number of total scenarios considered. Across all datasets and
failure types, MOLS achieves very high average solution rates
close to 100%. For the ISP Original dataset which best
reflects realistic scenarios from the real world, MOLS is
able to resolve all link failure scenarios and also close to or
even over 99% of the more severe SRLG and node failures.
Regarding the latter two failure classes, it should be noted
that this average value is even skewed downwards by two/one
outlier(s) for which MOLS performed considerably worse
(see the respective min value in Table II). When ignoring
those, MOLS is able to resolve 100% of the respective failure
scenarios in the remaining instances, as well. This shows that,
for the most realistic scenario sets, MOLS achieves basically
perfect performance, apart from a minute number of outliers.

For the ISP Backmapped dataset, MOLS also resolves
basically all link and SRLG failures scenarios. Only for node
failures, its performance drops slightly to “just” 97.8%, on
average. However, it should be taken into account that we
are dealing with topology and traffic matrix combinations
that were created to be intentionally challenging for TE (cf.
Section VI-A) even without any failures. Combining this with
node failures, which generally are one of the most complex
and severe but also rarest failures encountered in practice
[9], creates extremely challenging scenarios (basically a node
failure combined with a simultaneous unexpected increase in
traffic). Furthermore, our approach of using MCF to filter out
unsolvable scenarios does not guarantee that all remaining
instances are indeed solvable when adhering to real-world
requirements (i.e. regarding traffic splitting), like MOLS does.
Considering this, MOLS resolving overutilization in around
98% of these scenarios is a notable achievement.

Lastly, for the Repetita (Large) dataset, MOLS
achieves the overall lowest average percentage of solved
scenarios, with around 96% and 97% for link and node
failures, respectively. However, these lower values are again
caused by three substantial outliers that skew the overall
average downwards (see Fig. 12). For both scenario sets, they

ISP Original ISP Backmapped Repetita (Large)
Link SRLG Node Link SRLG Node Link Node

Dataset & Failure Type

10−2

100

102

O
p

ti
m

iz
a
ti

on
T

im
e

[s
]

Figure 6: Optimization times required by MOLS to resolve
overutilization resulting from different failure scenarios.

result from the same three instances (Chinanet, Dfn, and
Tw) which MOLS performs rather poorly on, in the worst case
only solving 1.7% of the respective link failure scenarios. We
looked into this and found that these three instances, even
when not considering any failures, seem to be intrinsically
difficult to solve with SR, in general. For neither of them, the
SC2SR algorithm [18] is able to match the optimal MCF
MLU of 0.9, and even the guaranteed optimal E2E 2SR
algorithm [3] is not able to do so for the Chinanet and
Tw instances. Thus, we strongly believe that, for those three
instances and their related failure scenarios, overutilization
might be preventable with MCF but not with TE approaches
that have to adhere to real-world constraints and limitations.
When excluding these three outliers, the average percentage
of resolved failure scenarios rises to over 99% again, for both
link and node failures.

While MOLS is given up to two minutes, it is able to
already find suitable solutions within considerably less than
a second for virtually all instances in the two ISP datasets
(see Fig. 6). While, for the Repetita (Large) dataset,
optimization times are slightly higher, MOLS still finds
suitable solutions in less than 10s for most instance, with
the majority still being solved in sub-second fashion. When
additionally looking at the number of policies required to
implement the respective solutions (see Fig. 7), it becomes
apparent that MOLS is not only able to quickly compute
solutions but the vast majority of those can be implemented
with just a low double digit number of policies. In fact, most
of the scenarios in the ISP datasets can be resolved with just
ten policies or less, making them easily verifiable by human
experts as well as facilitating a rapid deployment.

C. MOLS even keeps up with state-of-the-art strategic TE
approaches for SR MO.

As seen in the previous evaluations, despite its heuristic
nature, MOLS is able to achieve MLUs that often come close
to or even are virtually on-par with the optimal solution.
This brings it close to the solution quality of SC2SR [18],
the current state-of-the-art strategic TE approach for MO,

ISP Original ISP Backmapped Repetita (Large)
Link SRLG Node Link SRLG Node Link Node

Dataset & Failure Set

100

101

102

N
u

m
b

er
of

P
o
li
ci

es

Figure 7: Number of policies required for MOLS to resolve
overutilization resulting from different failure scenarios.

while requiring substantially lower computation times than
the latter. In fact, as already discussed in Section III, MOLS
might even be able to surpass SC2SR in terms of solution
quality, due to the fact that the latter features some artificial
limitations regarding the considered TE solutions. Those do
not apply to MOLS, which enables it to access regions of
the solution space that are not attainable by SC2SR. To
examine whether this constitutes an advantage for MOLS,
we compare the MLUs achieved with both algorithms, in
the following. MOLS is, again, run with a timelimit of just
two minutes (often requiring substantially less time to come
up with the respective solution), whereas SC2SR is given
unlimited computation time. For larger instances, the latter
resulted in running times in the magnitude of multiple hours.
This difference in computation time should be kept in mind
when interpreting the following results.

The relative percentage differences of the MOLS MLUs
compared to those obtained with SC2SR for all our datasets
are depicted in Fig. 8. A positive value resembles a higher
(or worse) MOLS MLU, while negative values represent
instances for which MOLS was actually able to find better
solutions than SC2SR. It can be seen that, for the majority of
instances, the solution quality of MOLS and SC2SR is quite
similar, which is already a notable observation as MOLS,
especially for the larger instances, requires substantially less
computation time. For the Repetita datasets, there is a small
share of instances for which MOLS is not quite able to
match the SC2SR solution. However, the differences are only
marginal (generally <2%). In fact, many of those would
most likely be virtually negligible in a practical deployment
since traffic, even when generally being quite stable on the
larger scale, is always subject to smaller ongoing variations,
which cover up such marginal MLU differences. The more
interesting finding, however, is the fact that MOLS is indeed
able to outperform SC2SR in a considerable number of
instances due to the fact that, contrary to the latter, it does
not impose any limitations on the explored solution space
(cf. Section III). While, generally, differences are only of
moderate scale (i.e. <10%), for some instances, MOLS is
able to reduce the MLU by more than 40%.

Repetita ISP
small medium large original backmapped

Dataset

−40

−20

0

R
el

a
ti

ve
M

L
U

D
iff

.
[%

]

Figure 8: Distributions of the relative percentage difference
of the MOLS MLUs compared to those obtained with the
SC2SR algorithm on different datasets. The dashed green
line marks the SC2SR solution level. Negative values indicate
MOLS achieving better MLUs than SC2SR.

Overall, these results show that MOLS achieves excep-
tionally good results, which can compete or even surpass
those of state-of-the-art optimization approaches that require
considerably more computation time and memory. In fact,
MOLS finds virtually optimal solutions (i.e. within <1% of
the theoretical optimal MCF MLU) for the vast majority of
instances across all considered datasets. This indicates that
MOLS is not only well suited for its originally intended use
case of tactical TE, but might also be applicable to other
scenarios in which greater emphasis is put on solution quality
and optimality, as well. One of those could for example be a
continuous/periodic re-optimization of the network to utilize
available resources in the most efficient way [41], [42]. We
plan to further look into this in the future.

VIII. EXTENDING MOLS TO SUPPORT FURTHER
REAL-WORLD REQUIREMENTS

So far we have seen that MOLS performs exceptionally
well regarding the achievable MLU, computation times, and
policy numbers (as well as the provisioning times related
to the latter), which are basically the three most important
quality metrics for tactical TE. However, when it comes to
a practical deployment, there can be further requirements,
individually depending on the respective network. During
discussions with our ISP partner, we identified two such re-
quirements which, while not strictly necessary, would ideally
be taken into consideration during optimization, as well. In the
following, we provide more details on the latter requirements
and how they can be implemented into the MOLS algorithm.

A. Modification of existing (strategic) TE configurations

In the previous sections, we used MOLS to compute a
suitable TE configuration completely from scratch, replacing
any potentially already existing configuration. Due to the
low policy numbers and respective provisioning times, this
is perfectly doable but, in many networks, TE is not used

Link SRLG Node
w/o w/ w/o w/ w/o w/

Failure Set

10−2

100

102

O
p

ti
m

iz
at

io
n

T
im

e
[s

]

(a) Optimization time.

Link SRLG Node
w/o w/ w/o w/ w/o w/

Failure Set

100

101

P
ol

ic
ie

s
C

h
an

g
es

(b) Policy numbers.

Figure 9: Distribution of the optimization times and policy
changes required by MOLS to remove congestion resulting
from different failure types in the ISP Original dataset
with (w/) and without (w/o) an initial strategic TE configu-
ration computed with the SC2TLE algorithm [18].

solely for tactical purposes and reactive re-optimization but
also during normal operation (i.e. to enhance general network
performance). In that case, completely replacing an existing
(strategic) TE configuration in the presence of a critical
event is less desirable, as it would need to be restored
after the event. Instead, simply adapting the already existing
configuration with as few changes as possible is the preferred
option. This not only makes it easier/faster to revert back to
normal operation but also maintains (most of) the operational
benefits of the original configuration, as well.

Implementation: We extend our MOLS algorithm to sup-
port the specification of an initial policy configuration that
the optimization should start from. As MOLS basically only
removes a policy if this results in an MLU improvement,
initially present policies that do not negatively impact the
latter remain untouched during optimization.

Evaluation: In the following, we show that this new feature
can be implemented with negligible impact on the quality of
the MOLS solutions reported in the previous sections. For
this, we repeat the failure scenario evaluation from Section
VII-B for the ISP Original dataset while supplying a
strategic TE configuration computed with the SC2TLE algo-
rithm [18] as initial TE configuration. The first thing to note is
that, while the use of an initial TE configuration can influence
whether a failure scenario results in overutilization or not,
this impact is rather low as the overall number of considered
failure scenarios is basically the same as before (cf. Table
II). When it comes to the overall percentage of resolved
scenarios, this number also stays basically the same compared
to computing solutions from scratch with 100%, 99%, and
99.6% for link, SRLG, and node failures, respectively. The
same holds true for the respective optimization time and the
number of changes (i.e. addition or removal of a policy)
that are applied to the initial configuration as can be seen in
Fig. 9. At first glance, it might look like the number of policy
changes for SRLG failures are considerably higher when
starting from an initial configuration as the box of the boxplot

is visibly larger. This observation, however, is misleading and
results from the logarithmic scale of the y-axis. The larger box
only illustrates some scenarios now requiring two instead of
just a single policy change, which is negligible in practice.

Overall, this shows that MOLS also allows to deal with
failures without requiring a complete overhaul of the network
configuration, but achieves virtually the same performance
while only adapting an already existing TE configuration with
just a small (mostly single digit) number of changes.

B. Latency Bounds

Another important constraint, especially in carrier networks
like ISP backbones, are latency bounds which define the
maximum acceptable delay for a traffic demand (i.e. resulting
from service level agreements). Especially strategic TE ap-
proaches often assume that, initially, these bounds are fulfilled
and thus only ensure that they do not introduce any new
violations. This, however, is not sufficient in the context of
tactical TE. Here, especially failures can result in latency
bounds already being violated at the start of the optimization.
Thus, fixing initially violated bounds has to be considered as
well. However, as it is not guaranteed that all violations can
be fixed and fast MLU minimization still remains the primary
objective, resolving latency bound violations has to be done
in a best-effort fashion to not negatively interfere with the
latter. To address these requirements, we extend the MOLS
algorithm with the following two functionalities:
• No New Violations (NNV): Prevents new latency bound

violations to be introduced during optimization.
• Violation Fix (VF): Prioritizes resolving existing latency

bound violations over MLU minimization, if the MLU
is below a user-defined threshold MLUpref.

Implementation: Preventing the introduction of new vio-
lations is rather straight forward. During the evaluation of a
candidate, we compute the resulting delays for all impacted
demands and compare them against there respective latency
bound. If the latter is exceeded, the candidate move is
rejected. Computing delay changes can be combined with
the MLU recomputations that are carried out anyway during
the candidate evaluation (cf. Section V) and, thus, do not
result in a relevant increase in complexity or computation
time. Adapting MOLS to also fix existing violations is more
complicated as it basically requires to dynamically switch the
optimization objective. For this, we implement an alternative
neighborhood exploration that is only used if the MLU is
below the specified threshold MLUpref for which resolving
bound violations should be preferred. This new neighborhood
exploration follows a similar approach as the one related to
MLU minimization described in Section V. First, it selects the
demand that exhibits the highest (relative) bound violation
and checks all possible moves that have the potential of
reducing the delay of the respective demand. During this,
it also makes sure that no move is selected which is ruled

A B C D E F G H I J K L M N O P R S

Instance

1.0

1.2

1.4

1.6

1.8

2.0

M
L

U
a
lg

M
L

U
M

C
F

SPR

MOLS (default)

MOLS (w/ NNV)

MOLS (w/ NNV & VF)

Figure 10: MLUs achieved by MOLS for the instances in the
ISP Original dataset when using the no new violations
(NNV) and/or violation fix (VF) functionalities. The dashed
green line marks the optimal MCF solution.

out by the tabu-list or results in the MLU surpassing the
respective threshold MLUpref. Out of all candidates, the one
that reduces the demand’s delay the most is selected, with the
exception being the encounter of a move that completely fixes
the respective bound violation. This is immediately accepted
without considering the remaining candidates. For a better
understanding, a pseudocode description of this procedure is
also provided in Algorithm 2 in the Appendix. Since there is
no guarantee that every latency bound violation can actually
be fixed, scenarios can occur in which there is no suitable
next move that reduces the delay of the respective demand.
In order to prevent the optimization from getting stuck in such
cases, violations for which no suitable move can be found will
be excluded from consideration until a new globally optimal
solution is found. Additionally, the solution postprocessing
is extended to also feature one last round of violation fix
attempts for each violated bound.

Evaluation: Latency bound information is generally not
publicly available (i.e. not featured in the Repetita dataset)
as it is considered confidential by most operators. However,
we were able to obtain real latency bounds for our ISP
Original dataset to use in the following evaluation.9 As be-
fore, MOLS is given up to two minutes to find a solution, and
the MLUpref value to distinguish between the prioritization of
MLU minimization or fixing violated latency bounds is set
to 0.8.10 The corresponding results regarding the achievable
MLU and the number of post-optimization bound violations
are shown in Fig. 10 and Table III, respectively. It can be
seen that the new features do not only effectively prevent the
introduction of new bound violations but also enable MOLS
to fix the majority of initially existing violations, while having

9Latency bound information for instance Q was not available. Thus, it is
excluded from consideration in the following evaluation.

10The latter value is selected w.r.t. operational principles applied in the
specific ISP backbone network considered here and, thus, might vary for
other networks. However, similar values (i.e. in the 70-90% range) for
an acceptable/desirable MLU threshold can be found in multiple different
contexts in the literature as well (e.g., in [43], [44], [45], [46]).

Table III: Overview over the number of latency bound violations after optimizing a problem instance with i) the default MOLS
version, ii) the no new violations (NNV) functionality, and iii) the NNV as well as the violation fix (VF) functionality.

Number of latency bound violations per instance
A B C D E F G H I J K L M N O P R S

default 57 93 70 38 75 99 22 32 29 44 94 1 77 46 31 53 200 111
NNV 2 2 1 2 2 74 2 6 12 12 1 1 1 0 3 2 107 0
NNV & VF 0 0 0 0 0 4 0 1 2 11 0 0 0 0 0 0 7 0

basically no negative impact on the solution quality (i.e. the
MLU). Furthermore, utilizing the NNV and VF features does
neither results in a considerably increase in policy numbers
nor computation time. The above findings also translate to
the optimization of failures. Here, the number of violations is
reduced to a single digit number for 94% of the considered
scenarios while resolving all violations for around 62%.

When interpreting the latter numbers, it has to be kept in
mind that MOLS is designed for the use case of tactical TE
in which the primary objective is to quickly obtain a reason-
ably good solution that restores basic network functionality.
While it is desirable for such solutions to also adhere to
operational soft-constraints like latency bounds, some (slight)
violations of the latter are often acceptable [47]. For some
failure scenarios, it can even be impossible to adhere to
all latency bounds due to important (high speed) network
components being unavailable/broken. Overall, we have seen
that, MOLS is able to provide (virtually) optimal solutions for
the backbone network of a Tier-1 ISP within seconds, while
not only preventing the introduction of new bound violations
but also fixing the majority of initially existing ones.

IX. CONCLUSION

In this paper, we successfully applied the concept of SR
MO to the context of tactical TE, showing that it can provide
considerable benefits for the latter. While it allows to obtain
solutions that are on-par or better than those of state-of-the-
art approaches relying on conventional E2E SR, it facilitates
an up to 99% reduction in the number of SR policies required
to implement them. This does not only translate to substan-
tially improved provisioning times but also greatly simplifies
the verification of the required changes by human experts.
Furthermore, an extensive evaluation on various real-world
topologies, including the backbone of a Tier-1 ISP has shown
that our proposed MOLS algorithm resolves over 99% of
different failure scenarios, mostly within sub-second fashion
and just a small (often single digit) number of configuration
changes. Finally, we also presented an algorithmic extension
that not only prevents MOLS from introducing latency bound
violations during optimization but even allows to fix the
majority of initially existing violations, as well. Overall, our
findings and contributions constitute a notable improvement
over the current state-of-the-art, further advancing the field
of SR-based TE. Regarding future work, this paper, and
other results in literature [18], [19], demonstrate that the

concept of MO can provide considerable benefits for SR-
based TE. Hence, we plan to further study MO and its
possible applications for other TE use cases in the future.

APPENDIX A
PSEUDO-CODE SNIPPETS

Algorithm 2 GETNEXTMOVELATENCY(S,TL,B) function
of the extended MOLS algorithm. (B := Latency Bounds)

1: move← None
2: d, curDelayd ← GETMOSTVIOLATEDBOUND()
3: C ← GETCANDIDATEMOVES(d)
4: for candidate c ∈ C do
5: newDelayd ← COMPUTENEWDELAY(S, c)
6: if c /∈ TL and curDelayd < oldDelayd and f(S+c) ≤

MLUpref then
7: move← c
8: curDelayd ← newDelayd
9: // If violation is fully fixed, return immediately

10: if curDelayd ≤ Bd then
11: return move
12: return move

APPENDIX B
THE MO-VARIANT OF THE SR TE PROBLEM IS NP-HARD

Theorem 1. The general (integral) MO SRTEP is NP-hard.

Proof. Given any instance of the NP-hard partition problem
that, for a given set A of n numbers ai ∈ N, aims to answer
whether A can be partitioned into two subsets A1 and A2

with so that the sum of numbers in both sets is equal:∑
x∈A1

x =
∑
y∈A2

y

This can be reduced to an instance of the MO SRTEP as
depicted in Fig. 11. For each number ai in A, a pair of
nodes (si and di) is created with a traffic demand of size
ai to be routed from si to di. All edges have the same
capacity (c =

∑n
i=1

ai
2), but thick-drawn edges feature a

higher metric value than thin-drawn ones. If (and only if)
there is a SR policy configuration that achieves an MLU
of exactly 1.0 (or 100%), then there also is a solution for
the respective partition problem. The reasoning behind this is
the fact that the total volume of traffic that has to be routed

from the left side of the network to the right side corresponds
exactly to the capacity of the two “bottleneck” paths between
those sides (S → A1 → T and S → A2 → T). Thus,
the optimally achievable MLU (even with arbitrary traffic
splitting) in this network is 1.0. Additionally, since both paths
have equal capacity, traffic also needs to be distributed evenly
across them for an optimal solution. However, splitting up
a demand across multiple forwarding paths (not including
ECMP splitting) is prohibited and ECMP itself will never
split up a demand across both bottleneck paths as they are
not of equal IGP weight. Thus, the only option to achieve
the optimal MLU of 1.0 is finding an SR configuration that
partitions all demands into two sets of equal volume, sending
one over the top and one over the bottom bottleneck path.
The respective partition sets can, thus, be derived by looking
at which demands pass over node A1 and A2. (This proof is
derived from the E2E SRTEP NP-hardness proof in [33].)

s1

s2

...

sn−1

sn

S

A1

A2

T

t1

t2

...

tn−1

tn

Figure 11: Example on how to encode the partition problem
as an MO SRTEP instance.

APPENDIX C
SUPPLEMENTARY FIGURES

ISP Orig. ISP Backm. Repetita (L)
Link SRLG Node Link SRLG Node Link Node

Dataset & Failure Type

0

20

40

60

80

100

S
o
lv

ed
S

ce
n

ar
io

s
[%

]

96

98

100

Figure 12: Distribution of the percentage of overutilization
scenarios resulting from the respective failure type that can
be resolved by MOLS within the two minute timelimit. The
inset plot provides a zoomed view for better readability.

ACKNOWLEDGMENT

We thank the anonymous JSAC reviewers for their insight-
ful comments improving the overall quality of this paper.

REFERENCES

[1] A. Brundiers, T. Schüller, and N. Aschenbruck, “Tactical Traffic Engi-
neering with Segment Routing Midpoint Optimization,” in Proc. IFIP
Netw. Conf. (NETWORKING), pp. 1–9, 2023.

[2] Uptime Institute, “Annual outage analysis 2023,” tech. rep., 2023.
[3] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman, “Optimized

Network Traffic Engineering using Segment Routing,” in Proc. IEEE
Int. Conf. Comput. Commun. (INFOCOM), pp. 657–665, 2015.

[4] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic Engineering with Forward Fault Correction,” in Proc. ACM
SIGCOMM, pp. 527–538, 2014.

[5] U. Usubütün, M. Kodialam, T. V. Lakshman, and S. Panwar, “Oblivious
Routing Using Learning Methods,” in Proc. IEEE Glob. Commun. Conf.
(GLOBECOM), pp. 5226–5231, 2023.

[6] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-Oblivious
Routing for Guaranteed Bandwidth Performance,” IEEE Commun.
Mag., vol. 45, pp. 46–51, 2007.

[7] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-Oblivious
Routing in the Hose Model,” IEEE/ACM Trans. Netw., vol. 19, pp. 774–
787, 2011.

[8] F. Hao, M. Kodialam, and T. V. Lakshman, “Optimizing Restoration
with Segment Routing,” in Proc. IEEE Int. Conf. Comput. Commun.
(INFOCOM), pp. 1–9, 2016.

[9] T. Schüller, N. Aschenbruck, M. Chimani, and M. Horneffer, “Failure
Resiliency With Only a Few Tunnels – Enabling Segment Routing for
Traffic Engineering,” IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 262–
274, 2021.

[10] A. Brundiers, T. Schüller, and N. Aschenbruck, “Live Long and Prosper
– On the Potential of Segment Routing Midpoint Optimization to
Improve Network Robustness,” in Proc. IEEE Conf. Local Comput.
Netw. (LCN), pp. 1–9, 2024.

[11] T. Li, C. Barth, A. Smith, and B. Wen, “Tactical Traffic Engineering
(TTE),” Internet Draft draft-li-rtgwg-tte-01, 2023.

[12] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Chang-
ing World,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp. 756–767,
2002.

[13] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A Declarative and Expressive Approach
to Control Forwarding Paths in Carrier-Grade Networks,” in Proc. ACM
SIGCOMM, pp. 15–28, 2015.

[14] S. Gay, R. Hartert, and S. Vissicchio, “Expect the Unexpected: Sub-
Second Optimization for Segment Routing,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), pp. 1–9, 2017.

[15] T. LaBerge, C. Filsfils, and P. Francois, “Tactical Traffic Engineering
Based on Segment Routing Policies ,” 2020. U.S. Patent 10742556B2.
[Online]. Available: https://patents.google.com/patent/US10742556B2.

[16] R. Mota, “Segment Routing Survey,” white paper, ACG Research, 2022.
[17] P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam,

C. Filsfils, P. Camarillo, and F. Clad, “Segment Routing: A Com-
prehensive Survey of Research Activities, Standardization Efforts, and
Implementation Results,” IEEE Commun. Surveys Tuts., vol. 23, no. 1,
pp. 182–221, 2021.

[18] A. Brundiers, T. Schüller, and N. Aschenbruck, “Midpoint Optimization
for Segment Routing,” in Proc. IEEE Int. Conf. Comput. Commun.
(INFOCOM), pp. 1579–1588, 2022.

[19] A. Brundiers, T. Schüller, and N. Aschenbruck, “An Extended Look at
Midpoint Optimization for Segment Routing,” IEEE Open J. Commun.
Soc., vol. 5, pp. 1447–1468, 2024.

[20] J. Shen and H. Smit, “Calculating Interior Gateway Protocol (IGP)
Routes Over Traffic Engineering Tunnels,” RFC 3906, RFC Editor,
2004.

[21] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, 2018.

https://patents.google.com/patent/US10742556B2

[22] C. Filsfils, K. Talaulikar, D. Voyer, A. Bogdanov, and P. Mattes,
“Segment Routing Policy Architecture,” RFC 9256, RFC Editor, 2022.

[23] T. Schüller, N. Aschenbruck, M. Chimani, M. Horneffer, and S. Schnit-
ter, “Traffic Engineering using Segment Routing and Considering
Requirements of a Carrier IP Network,” IEEE/ACM Trans. Netw.,
vol. 26, no. 4, pp. 1851–1864, 2018.

[24] D. O. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swal-
low, “RSVP-TE: Extensions to RSVP for LSP Tunnels,” RFC 3209,
2001.

[25] Z. N. Abdullah, I. Ahmad, and I. Hussain, “Segment Routing in
Software Defined Networks: A Survey,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 464–486, 2019.

[26] Cisco Systems, “Cisco WAE Design 7.6.x User Guide,” 2022.
[27] Juniper Networks, “Junos OS IS-IS User Guide,” tech. rep., 2021.
[28] J. Zheng, H. Xu, X. Zhu, G. Chen, and Y. Geng, “Sentinel: Failure

Recovery in Centralized Traffic Engineering,” IEEE/ACM Trans. Netw.,
vol. 27, no. 5, pp. 1859–1872, 2019.

[29] A. Bashandy, S. Litkowski, C. Filsfils, P. Francois, B. Decraene, and
D. Voyer, “Topology Independent Fast Reroute using Segment Rout-
ing,” Internet Draft draft-ietf-rtgwg-segment-routing-ti-lfa-13, 2024.

[30] Z. Wang and J. Crowcroft, “Shortest Path First with Emergency Exits,”
in Proc. ACM SIGCOMM, pp. 166–176, 1990.

[31] F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc.,
2006.

[32] A. Brundiers, T. Schüller, and N. Aschenbruck, “Preprocess your Paths
– Speeding up Linear Programming-based Optimization for Segment
Routing Traffic Engineering,” in Proc. IFIP Netw. Conf. (NETWORK-
ING), pp. 303–312, 2024.

[33] R. Hartert, P. Schaus, S. Vissicchio, and O. Bonaventure, “Solving
Segment Routing Problems with Hybrid Constraint Programming Tech-
niques,” in Proc. Int. Conf. Princ. Pract. Constr. Program. (CP),
pp. 592–608, 2015.

[34] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., 1997.

[35] F. Glover and M. Laguna, Tabu Search. Springer US, 1998.
[36] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols,

and Architectures. Morgan Kaufmann Publishers Inc., 2017.
[37] S. Gay, P. Schaus, and S. Vissicchio, “REPETITA: Repeatable Experi-

ments for Performance Evaluation of Traffic-Engineering Algorithms,”
ArXiv e-prints, 2017.

[38] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet Topology Zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, 2011.

[39] M. Roughan, “Simplifying the Synthesis of Internet Traffic Matrices,”
ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 93–96,
2005.

[40] E. Husni and A. Bramantyo, “Design and Implementation of MPLS
SDN Controller Application based on OpenDaylight,” in Proc. IEEE
Int. Symp. Netw., Comput. and Commun. (ISNCC), pp. 1–5, 2018.

[41] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-Deployed Software
Defined Wan,” in Proc. ACM SIGCOMM, pp. 3–14, 2013.

[42] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-Driven
WAN,” in Proc. ACM SIGCOMM, pp. 15–26, 2013.

[43] R. D. Doverspike, K. K. Ramakrishnan, and C. Chase, “Structural
Overview of ISP Networks,” in Guide to Reliable Internet Services
and Applications, pp. 19–93, Springer London, 2010.

[44] F. Francois, N. Wang, K. Moessner, and S. Georgoulas, “Optimizing
Link Sleeping Reconfigurations in ISP Networks with Off-Peak Time
Failure Protection,” IEEE Trans. Netw. Service Manag., vol. 10, no. 2,
pp. 176–188, 2013.

[45] A. Nucci, N. Taft, P. Thiran, H. Zang, and C. Diot, “Increasing the
Link Utilization in IP over WDM Networks Using Availability as QoS,”
Photonic Netw. Commun., vol. 9, pp. 55–75, 2005.

[46] D. Otten, M. Ilsen, M. Chimani, and N. Aschenbruck, “Green Traffic
Engineering by Line Card Minimization,” in Proc. IEEE Conf. Local
Comput. Netw. (LCN), pp. 1–8, 2023.

[47] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev, “Prob-
abilistic Verification of Network Configurations,” in Proc. ACM SIG-
COMM, pp. 750–764, 2020.

ALEXANDER BRUNDIERS (Student Member,
IEEE) received his master’s degree in computer
science from Osnabrück University, Germany, in
2020. He is currently pursuing his Ph.D. degree
with the Distributed Systems Group of the Institute
of Computer Science at Osnabrück University. His
research mainly focuses on segment routing and
its applications for intra-domain traffic engineering,
but his interests also encompass various areas in the
broader field of Internet routing.

TIMMY SCHÜLLER received his master’s de-
gree and Ph.D. in computer science from Os-
nabrück University, Germany, in 2015 and 2020,
respectively. From 2015–2019 he was working in a
joint project with Detecon International GmbH and
Deutsche Telekom Technik GmbH. Since then he is
working as a devops engineer at Deutsche Telekom
Technik GmbH. As such, he works towards devel-
oping and deploying next-gen traffic engineering
strategies in a global IP backbone network.

NILS ASCHENBRUCK (Member, IEEE) re-
ceived the Graduate Diploma and Ph.D. degree
in computer science from the Bonn University,
Germany, in 2003 and 2008, respectively. He was
a Senior Researcher and the Head of the research
area “tactical wireless multi-hop networks” with the
Communication Systems Group at Bonn University.
Since 2012, he has been holding a Tenured Pro-
fessorship for distributed systems at the Osnabrück
University. His research focus is on dependable
and robust networked systems including scenario

modeling, traffic engineering, and network security.

	Introduction
	Segment Routing & Midpoint Optimization
	Related Work
	Problem Statement
	The MO SR Traffic Engineering Problem
	Operational Requirements for the Use Case of Tactical TE

	Algorithmic Approach
	Solution Representation & Neighborhood
	Neighborhood Exploration Strategy
	Diversification
	Move Evaluation
	Stop Criteria & Postprocessing

	Evaluation Setup
	Data

	Evaluation Results
	How does MOLS perform compared to state-of-the-art tactical TE approaches relying on conventional E2E SR?
	How fast can MOLS resolve overutilization scenarios?
	Traffic Changes
	Failures

	MOLS even keeps up with state-of-the-art strategic TE approaches for SR MO.

	Extending MOLS to support further real-world requirements
	Modification of existing (strategic) TE configurations
	Latency Bounds

	Conclusion
	Appendix A: Pseudo-Code Snippets
	Appendix B: The MO-variant of the SR TE Problem is NP-hard
	Appendix C: Supplementary Figures
	References
	Biographies
	ALEXANDER BRUNDIERS
	TIMMY SCHÜLLER
	NILS ASCHENBRUCK

