
Enhancing Business Process Management
with a Constraint-Based Approach

Wolfgang RUNTE
Institute of Computer Science

University of Osnabrueck
D-49069 Osnabrueck, Germany

woru@informatik.uni-osnabrueck.de

Abstract. In the 1980s rule-based systems became very popular in the
domain of expert systems. It soon became apparent, that large rule-
based systems causes enormous maintenance problems, because of the
lack of separation between domain knowledge an control strategy. Rules
are declarative, weakly structured, difficult to manage and maintain and
should be applied only in local contexts and with limited use. For large
rule bases the user can not be sure if the problem is completely covered
by the rules, modifications often result in unwanted consequences. For
application in business process management (BPM) rules became pop-
ular again, but the known insufficiencies still remain. Today it seems to
be quite ignored that techniques using rules have strucural drawbacks
that limit their application significantly. We present a constraint-based
approach to enhance process models with additional knowledge. Con-
straints allow compact modeling of decision processes to inference spe-
cific values in process models. Furthermore constraints may be used as
mechanism for quality assurance (QA). Constraints also have a declara-
tive paradigma but avoid the lack of separation between domain knowl-
edge and control strategy. Constraint solvers used as black box by a pro-
cess engine will merely compute an output based on the given domain
knowledge and return these as new input for the process engine. The
constraint solver will give control as soon as possible back to the process
engine. The process engine exclusively has to decide how to proceed. So
constraints support a process engine without competing for the control
strategy.

Keywords. business process modeling, business rules, maintenance
problem, constraint satisfaction

1. Motivation

In business process management (BPM) compilances and relations between pro-
cesses have to be considered by process engines. For the definition of relations
and for compliance management mainly the rule-based approach, namely busi-
ness rules, is applied [1]. The control flow in BPM systems is supported by rule
engines. Decisions are taken on basis of dependencies and relations between enti-
ties defined in business rules. A practical field of application of business rules is

New Trends in Software Methodologies, Tools and Techniques
H. Fujita and R. Revetria (Eds.)
IOS Press, 2012
© 2012 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-61499-125-0-215

215

the area of ERP systems (enterprise resource planning) [2], [3], [4], [5]. Although
there was almost a hype around the application of business rules in the last years
there exist a number of well known drawbacks in the usage of rules in software
systems. Today it is quite disregarded that already in the 1980s the excessive
usage of rules showed evident insufficiencies.

1.1. Drawbacks of Rule-Based Systems

In the early days of expert systems (later on called knowledge-based systems) the
research and development were dominated by the rule-based approach, so expert
systems were characterised as rule-based systems. Knowledge-based systems for
synthesis tasks like product configuration used rules as inference mechanism for
the first time in increased dimensions [6,7]. It soon became apparent that large
rule-based systems causes enormous maintenance problems [8,9,10]. Rules specify
directed relationships as well as actions. While a directed relationship represents
domain knowledge between entities, an action represents procedural knowledge to
control the execution of a task. The lack of separation between domain knowledge
and control strategy and also the sharing of knowledge about a single entity over
several rules make the knowledge maintenance an extremly difficult task [11,12].

Consider the problem of updating rules with respect to changes in specific
entities. It is very hard and very costly to be certain that all rules were found
that need to be updated. Moreover the rule engine does not execute the action
part if the condition of a rule is not up to date. So every maintenance task has
to be performed very carefully and accurately what will result in high costs for
each update. Otherwise one cannot be sure a specific rule is considered at all. The
developer of the rule base has to ensure that all required conditions are covered
by the set of rules and all desired actions can be reached. So also small changes
will generate much costs [12].

To get an idea about the complexity of the maintenance task in rule-based
systems there exists the well documented example of the rule-based configuration
system R1/XCON, a well known knowledge-system for configuring VAX computer
systems at Digital Equipment Corporation (DEC) [13,6]. R1/XCON used OPS-5,
a production rule programming language. In 1989 XCON had in its rule base more
than 31,000 object descriptions and approximately 17,500 rules [10]. Of these rules
approximately 40-50 percent have to be modified or regenerated every year. The
maintenance of the knowledge base was carried out by up to 40 employees [14].
Often the developers weren’t sure about the intended purpose of a certain rule,
so modifications resulted in unwanted consequences [15]. Because of the extreme
maintenance costs some authors claimed that XCON was no longer maintainable
[16].

This challenge leads to modularization and the subsumption of rules to meta
rules. A programming methodology called RIME was developed that provides
structuring concepts for rule-based programming [9,17]. Meta rules are used to
control and order context specific decisions. The developer is able to force the fir-
ing of rules in a fixed sequence and therefore decomposing the problem into steps.
When entering a step, the system activates the satisfied rules and the process
proceeds to the next step. Indirectly, this provides some guidance in organizing

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach216

the rule base, but because of the huge number of rules, the maintenance problem
remains still unsolved [12]. Furthemore numerousness additional dependencies of
the rules between each other had to be managed, and rules were no independent
knowledge units any more [16].

R1/XCON is a good illustration that lead to the understanding that rules
are only weakly structured and should only be used in manageable domains in
a straightforward manner. Because of the known insufficiencies rules should be
applied only locally and with limited use. The rule-based approach is not well
suited for the global control of processes at all [16]. With respect to process engines
this means rules are suited only for limited application. Rules are well suited to
represent local, causal relationships (implications), but the global control should
be performed exclusively by the process engine on basis of the process model.

Notwithstanding the process engine may be combined with other techniques.
Instead of rules dependencies and relations can be modeled with constraints to
eliminate the risk of mixing domain knowledge and control stragegy. A constraint
solver will support the process engine using constraint satisfaction techniques to
ensure the consistency of the modeled dependencies. Here the black box principle
guarantees that the constraint solver is not used to take control over the prozess
engine.

1.2. Example: Difference between Rules and Constraints

A simple example will illustrate the difference between a rule and a constraint.
Imagine the process model in the scenario of the organization and realization of
a holiday tent camping of a children’s group. The following is an example of an
important rule during this camping:

If there is a storm warning, then
strike the tents and evacuate the camp.

Notice that the rule contains some control knowledge, i. e. which activities
have to be executed next if the condition is fulfilled. In the same scenario the
appropriate constraint would be simple like this:

no storm warning

Or in a slightly more formally way:

stormWarning == false

Which means that there must not be a storm warning, otherwise the con-
straint is not satisfied. A constraint violation would mean the process model is in
an inconsistent state, for which e. g. a sort of exception handling would be an ap-
propriate reaction by the process engine. The difference to a rule-based approach
is that the control knowledge, defining what to do if the constraint does not hold
(strike the tents and evacuate the camp) has to be modeled as a process model
executed by the process engine, not by a rule engine.

Constraints (and so rules) should contain as less as possible control knowl-
edge. Instead the process engine should get back the flow control as soon as possi-

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 217

ble. Notice that in the constraint above there is no information about what to do
if the constraint is violated. Ergo there is no control knowledge in this constraint,
while in the rule concrete actions are specified. What to do if the constraint is
violated, that means the variable stormWarning would have the value true, has
to be specified elsewhere. For this a separate component is needed that decides
how to proceed in the case of a constraint violation.

The above example is a simple unary constraint containing only one vari-
able: stormWarning. More constraints with more variables would form a net of
constraints and the change of the value of a variable can be propagated through-
out this constraint net with constraint satisfaction techniques. So with constraint
propagation it is possible to generate inferences on the basis of the knowledge
represented by constraints.

In this paper we will show that constraint satisfaction is an adequate tech-
nique to model and manage dependencies in business processes. It is an alterna-
tive for the usage of rule-based approaches, which have well known insufficiencies.
Because of the domain indendency and the absence of control strategy constraints
may become an important role, e. g. in the field of quality assurance (QA) of
business processes.

In the following section 2 the principles of the rule-based approach and ex-
amples of current rule engines are discussed. In section 3 we give an overview
over the principles of the constraint-based approach and the application of con-
straints in business process management. In section 4 examples for constraints in
business processes models are shown and furthermore a classification in different
classes of constraints is elaborated. In section 5 a basic discussion with respect
to benefits of the constraint mechanism is given. Section 6 contains related work
and in section 7 a conclusion and a short outlook is given.

2. Rule-Based Systems

The usage of rules in the development of software systems has a long history.
In the development of expert systems in the 1980s the rule-based approach was
widely used to define domain and control knowledge. In the following sections the
functionality and the properties of rule-based systems will be shown.

2.1. Principles of the Rule-Based Approach

Rule-based systems are a special form of knowledge-based systems. The rules
in this knowledge-based systems are called production rules, productions or
condition-action rules and have typically the following form [18,19]:

IF <conditions> THEN DO <actions>

Besides the definition of causal relations between objects the strongness of
this approach is to describe and evaluate heuristic dependencies. Each rule is an
independent knowledge unit and will be interpreted and executed by a domain
independent rule engine. Data-driven rule engines match the conditions of rules
with respect to existing data and identify rules to be executed next (forward

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach218

chaining). Demand-driven rule engines are focused on the action parts of the
rules. Rules whose action part contains a previously defined goal will be collected
in a conflict set. Out of this conflict set a rule is picked to be executed next.
The conditions of this rule are the goals to be used in the next turn (backward
chaining). In case of conflicts, which means multiple rules are able to be executed,
the ordering of rules to be executed may be generated domain independent or with
respect to domain dependent knowledge. A domain independent rule selection
may consider the most current or the most special rule. A domain dependent
selection may support priorities, goal functions or meta rules for example.

The principle of forward chaining rule-based systems is to look out for rules
whose conditions are satisfied. In simple implementations in every turn all con-
dition parts of all rules have to be checked against the current (new input) data.
Because this is problematic with large rules bases optimizations are applied to
make rule-based systems more efficient:

• Reduction of the data to check: In every turn only a (small) part of the
data is changed, so in the next turn only these changes will be checked.

• Reduction of the conditions to check: The conditions of different rules are
generally not disjunct, for identical parts checking has to be done only once.

These are the principles of the Rete algorithm [20], which was developed by
Charles Forgy at the Carnegie Mellon University for the OPS-5 language (see
above). Based on the conditions of the given rules a decision network in form
of a data flow graph is generated (“rete” is Latin for net). Shared conditions
will be checked only once, no matching is done twice. Changes of the data are
propagated throughout the decision network with low costs. The algorithm is an
efficient implementation of the rule matching mechanism. Many systems similar
to XCON have been build using the same underlying technology. Variations of
the Rete algorithm are still the core of most current rule-based systems.

2.2. Current Rule-Based Systems

In the following a quick overview over some examples of current rule-based sys-
tems, also known as business rules management systems (BRMS) is given:

2.2.1. IBM WebSphere ILOG JRules

ILOG JRules [21] is part of IBM’s application and integration middleware “Web-
Sphere” and has a market leading position in enterprise software for building and
deploying rule-based applications for Java, mainframe, and SOA-based environ-
ments. The ILOG JRules framework is a software suite and comes with a set of
tools, various rule languages, a rule repository including version control, a specific
application server called business rule execution server and a rule engine, based
on a variant of the Rete algorithm. The tool set includes tools for syntax and
consistency checking of rules (broken and redundant rules). The rule languages
of ILOG JRules differ from natural language syntax to Java programming lan-
guage. Authoring, testing and deploying of business rules can be done by using
the Eclipse IDE. Because of the Eclipse IDE integration developers can write
and debug Java code and business rules within a single environment. Rules are

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 219

debugged in the same way as in Java by setting breakpoints in both application
code and rules, stepping from one to another. In addition there exists a sepa-
rate rule builder application as standalone and as web application, intended for
the usage through business analysts rather than developers. Besides JRules for
Java IBM also offers BRMS solutions supporting COBOL, .NET and z/OS (IBM
mainframe) environments.

2.2.2. BOSCH Software Innovations Visual Rules

Another commercially successful BRMS is the Java-based Visual Rules [22] from
BOSCH Software Innovations. Visual Rules is integrated in the Eclipse IDE and
comes with a visual modeling approach. Basically a sort of program flow chart,
called “rule tree”, can be modeled. The modeling tool focuses on supporting the
modeling of flow rules and decision tables in an as easy understandable and as
intuitive way as possible (modeling rule trees with intuitive symbols, processing
from left to right, from top to bottom, rules are modeled in sequence, etc). It
allows rules and rule models to be hierarchically structured by using rule pack-
ages. In addition the modeling tool concentrates on reliable and extensive docu-
mentation of the rules and also on reporting mechanisms to present the results.
An integrated test editor allows to define test cases for rules, the editing of test
data and the expected results and the configuration and execution of tests. Fur-
thermore Visual Rules covers all component areas of modern BRMS and conse-
quently comes with a centralized rule repository supporting versioning, database
integration for accessing data stored in a DBMS, and an execution server. The
execution server allows the deployment of rules as web services (WSDL) to be
used in SOA environments, e. g. for decision services in BPM and the integration
of rules into .NET applications.

Interestingly Visual Rules is a non-Rete-based system, also called explicit rule
engine or explicit system, which means the dependency of rules is explicitly spec-
ified in the modeler. The rules are then the basis for generating Java code auto-
matically (COBOL is also supported). This code contains the modeled business
logic and can simply be deployed from the modeling tool to the execution server or
may be used in business applications direcly or via EJB (Enterprise Java Beans).
In this way Visual Rules is a graphical modeling tool with a forward engineer-
ing approach. Because the rule trees modeled with Visual Rules contains a fix
ordering of the rules this approach is well suited for applications where the rule
tree is not changing much over the time and where it is relatively small-sized to
be manageable. Applications with more dynamic and larger rule-bases are quite
better handled by Rete-based rule engines.

2.2.3. Red Hat JBoss Enterprise BRMS

The JBoss rules platform is a Java-based open source BRMS including the
“Drools” open source rule engine, which is commercially distributed and sup-
ported by Red Hat as part of the JBoss Enterprise BRMS [23]. It provides a
logically centralized repository for storing and versioning the business knowledge,
Eclipse IDE integration and a web-based environment allowing business users
to view and (within certain constraints) update the business logic directly. The

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach220

enhanced debugging in Eclipse extends the normal Eclipse debugging with spe-
cialized views, e. g. for showing the currently running process instances and the
state they are in. The deployment of business rules is possible with the JBoss
application and SOA platforms as well as with third-party application servers and
SOA environments (IBM WebSphere for example, see above). Additionally, the
business rule engine may be deployed in standalone mode for direct application
access without any server component. Moreover the JBoss Drools community ver-
sion provides components for workflow and business processes, event processing,
temporal reasoning, and automated (optimized) planning.

The Drools rules engine supports integration in various programming lan-
guages (e. g. Java, Python, Groovy) and supports the .NET platform and SOA
environments. The representation of business rules ranges from the XML-based
Drools Rule Language (DRL), “native” XML to decision tables (the last may be
authored by external spreadsheet processing programs). The DRL is extendable
and provides support for defining business rules in domain-specific, natural lan-
guage. Core of the rule engine is Rete-OO, an enhanced implementation of the
Rete algorithm tailored for object-oriented forward-chaining systems.

2.2.4. Jess

The well-known and often as expert system shell referred Jess [24] is a rule en-
gine and scripting environment for the Java platform. It was written by Ernest
J. Friedman-Hill at Sandia National Laboratories. Jess is not a BRMS at all. It
can be used to build applications that use knowledge in form of declarative rules.
Jess provides rule-based programming in Java by continuously applying a set of
rules to a set of facts. The rules can modify the facts or execute any Java code.
Jess was originally planed as a Java clone of the CLIPS rule language, a classical
software tool for building expert systems like Charles Forgy’s OPS language (see
above). Like CLIPS the rule language of Jess is similar to Lisp syntax. Today Jess
is a superset of the CLIPS programming language and still compatible, in that
many Jess scripts are valid CLIPS scripts and vice-versa. The latest release of
Jess includes a major update of the rule engine and supports its own declarative
XML-based rule language called JessML. Furthermore it comes with a graphical
rule development environment based on the Eclipse IDE providing editor func-
tions, code formatting, error checking, run and debug commands and a graphical
debugger for Jess programs. Jess is one of the rare “hybrid” systems allowing
forward chaining as well as backward chaining. Like CLIPS, Jess uses an imple-
mentation of the rete algorithm. While CLIPS is open source, Jess isn’t, but Jess
is free for educational and government use.

On the basis of Jess the JSR-94 standard was founded: the Java Specification
Request for a Java Rules Engine API [25]. ILOG JRules and JBoss Drools also
support this API to allow the customer to be independent of a certain rule engine
implementation.

2.3. Discussion on Rule-Based Systems

Current BRMS are typical rule-based systems with the well know advantages and
drawbacks. The variations and improvements of the Rete algorithm are efficient,

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 221

but because of the weakness of the rule-based approach (maintenance problem,
weakly structured) it is only suited for local dependencies with heuristic knowl-
edge. The non-Rete-based system with explicit rules is a forward engineering
modeling tool. It is convenient for rather small-sized and static rule trees.

Current rule-based systems come with enhanced capabilities for analysis and
debugging improving the development and the maintainability of the rule base,
an improved architecture storing rules separated from the domain knowledge, but
the essential weakness of rules still remains due to characteristics of the rule-
based approach (see above). The efficiency of the usage of todays rule engines in
business process management depends on how rules are applied. The modeling
of the process engineer, represented by the business process model, and the size
of the rule base are essential for the efficiency of the approach. To manage the
maintenance problem rules should only be applied in local contexts. Used as the
exclusive inference mechanism, rules in current BRMS will become as critical as
in the past, if the rule base grows up.

BRM is often applied in ERP environments, where a similar effect can be
observed: During configuration of widely implemented systems like SAP ERP
many parameters have to be customised. These parameters are input values for
relations internally represented and evaluated like rules. As in rule-based systems
these values have direct consequences for the control strategie of processes. The
manpower and the high costs needed for the implementation and maintenance
of these systems is definitely due to the comprehensive approach of ERP. It is
also clearly an evidence for the complexity of the dependencies and that rules are
applied too much, so it is hard for employees and consultants to maintain the
overview of all details of the customized system.

It was one lesson of the 1980s to use different inference mechanism in
knowledge-based systems. Different kinds of knowledge need different approaches
to represent it. Each kind of knowledge should be modeled with an adequate rep-
resentation mechanism. Besides this for existing dependencies appropriate solu-
tion mechanisms are needed. The requirement in software systems is to support
this mechanisms. For the appropriate modeling of existing dependencies in BPM
an additional inference mechanism is reasonable which does not compete against
the process engine for the control strategy.

3. Constraint-Based Systems

In the area of artificial intelligence (AI) constraints have been in the focus of in-
tensive research for decades [26,27]. There exist efficient algorithms and heuristics
for the reduction of problem size and for an efficient generation of solutions.

3.1. Principles of the Constraint-Based Approach

Constraint techniques can be used to guarantee that specific relations hold, so the
principle is a declarative paradigm. In general for the processing of constraints
the problem is formulated as a constraint satisfaction problem (CSP). A CSP is
a triple (V,D, C) where V denotes a finite set of variables, D denotes a set of

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach222

associated domains with possible values for each variable, and C denotes a finite
set of constraints:

Definition 3.1 A constraint satisfaction problem is specified by a triple (V,D, C),
whereas V = {v1, . . . , vn} is a finite set of variables with associated domains
D = {D1, . . . , Dn} with {v1 : D1, . . . , vn : Dn}. C is a finite set of con-
straints Cj(Vj), j ∈ {1, . . . , m}, whereas every constraint Cj(Vj) sets a subset
Vj = {vj1 , . . . , vjk

} ⊆ V of variables in relation to each other and restricts their
valid combinations of values to a subset of Dj1 × · · · × Djk

.

Each constraint defines a relation between a subset of variables and constrains
the possible values for the involved variables. A constraint concerning only one
variable is a unary constraint, constraints concerning two variables are binary
constraints, constraints with three variables are ternary constraints, etc.

If for any reason the domain of a variable is reduced to a smaller number of
values, this domain modification can be propagated through the constraint net
using the available constraints to determine smaller value domains for the rest
of the involved variables. Constraint propagation is used to reduce the problem
size of CSPs and to reach different levels of local consistency with respect to
the value domains of the constraint variables. Another aspect is the application
during search algorithms looking for solutions of a specific CSP.

A short example is the following simple constraint problem: Let there be two
variables a and b each with the assigned value domain {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
and the binary constraints c1 : a + b = 10 and c2 : a − b = 2. The solution for
this simple constraint problem would be a = 6 and b = 4. Note that besides
arithmetic domains also symbolic domains are feasible and that the principles are
not restricted to discrete domains.

Algorithms for constraint satisfaction are usually combined in a software com-
ponent named constraint solver. Constraint solvers are used adopting the black
box principle which makes integration easier and also allows the substitution of
a solver with another solver.1 Additionally the black box principle guarantees
the separation of domain knowledge and control knowledge, because the control
strategy is exclusively managed by the application (e. g. a process engine) using
the solver component. For this the application gives relevant data (domain knowl-
edge) as input to the constraint solver. The result of a solving process is output
data that is updated values for the given input data. The application knows noth-
ing about the internal solving process of the constraint solver and vice versa. So it
is at the application to use the results of a constraint solver, and it is modeled in
the application if and how the results will influence the further control strategy.

3.2. Constraints in Business Process Models

The enhancement of business processes with constraints should be realized in a
straightforward manner to maximize the acceptance of the technology. To sepa-
rate control knowledge from business rules the control flow is managed by a pro-

1Analogous to JSR-94 for Java rules engines, JSR-331 was founded: the Java Specification
Request for a Constraint Programming API [28].

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 223

cess engine. Rules defining dependencies and relations in business processes are
enhanced or replaced by constraints. As less as possible control knowledge should
be modeled with rules to avoid the problems discussed in section 1. Currently we
see the following fields of application for constraints in BPM:

• Constraints as a replacement for business rules, to bring control as soon
as possible back to the process engine. The user is able to model the con-
trol flow intuitively and graphically as process model instead of abstract
business rule definitions.

• Classical application of constraints, i. e. dependencies and relations of ele-
ments and attributes of a business process may be modeled as constraints
to inference values due to specific (user) input and to guarantee a consis-
tent process configuration. A constraint violation will result in a sort of
exception handling and the execution of a (regular) process defined in the
process model.

• Constraints as an instrument of QA: Known dependencies can be addition-
ally made explicit through respective constraints in the process model to
support further modeling ensuring the consistency of the process model. In
further revisions of the process model the user will get feedback in case of
an inconsistent modeling or modeling errors.

For the above cases we have generally two situations for the application of
constraint technology in business processes:

• Static use of constraints at modeling: Constraints are used to check for a
consistent process model.

• Dynamic use of constraints at runtime (simulation or live): Constraints are
used to check for consistent states of process instances at runtime.

For the static use of constraints as modeling support in a process editor the
user has to define known static dependencies in the process model as constraints.
A constraint solver checks efficiently for inconsistencies during the modeling. If a
constraint does not hold because of an inconsistent modeling the user will get a
notification.

For dynamic use the constraints have to be applied in a simulation or in a
real life system. Dependencies defined for dynamic use can only be checked at
runtime because they require elements or parameters which will not be known
before concrete process instances are avaiable. The constraint solver is checking
for inconsistencies during the execution of the business processes. Inconsistencies
will result in pre-defined actions.

Furthermore the process engine has to be enhanced by a component that
monitors the constraints and reacts in case of constraint violations. We propose
a constraint handler to perform these tasks. The constraint handler decides what
do to if a specific constraint does not hold. The following alternative actions may
be taken:

• A predefined process is executed (handling the constraint violation) paral-
lel to the origin process, who triggered the predefined process and which
execution is continued.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach224

< a c t i o n >

 [violation]

EPC notation elements: constraint related extensions:

funct ion

event

information object

organizational unit

control f low

information f low

assignment of resources

assignment between constraint and
origin function/process defining the
action to be taken, i f the constraint
is violated; possible values:
<act ion> : := "cont inue" | "pause" |
 "cancel" | "ignore"

control f low between constraint and
process/function to be executed, if
the constraint is violated (labeling is
optional)

associated constraint; the constraint
relation may be specif ied optionally
with a specif ic labeling referencing
the name of the constraint

logical operators

Figure 1. Legend of EPC notation elements and constraint related extensions used in this work.

• The origin process is paused until a predefined process is executed and
finished.

• The origin process is canceled and (optionally) a predefined process is ex-
ecuted.

• The constraint violation is ignored and the execution of the origin process
continued, for information only (optionally) a feedback may be generated
and given to the user (modal or non-modal).

Besides this, the last action implies it, additional actions for user interaction
like graphical user feedback, log messages, file output, email messages, or user-
defined actions or applications may optionally be triggered by the constraint
handler.

In order to realize the above we need the possibility to reference elements of a
process model in a constraint. Constraints may constrain the structure (e. g. the
ordering sequence) inside a process model, the type of model elements, attributes
of model elements, and input/output data of processes. A graphical visualization
is given in figure 1. In this work we use the notation of event driven process
chains (EPC) to represent business processes [29]. In the figure only a subset of
EPC notation elements relevant for the examples on the next pages are shown. In
addition figure 1 contains the constraint related extensions used in the examples
in this work.

To define relations on business processes a domain-specific language (DSL)
[30] for constraint relations has to be specified. This constraint language has
to allow the process designer to reference elements of process models and to
specify the constraints themself. It is necessary to reference processes, attributes
and input/output parameters of processes as well as defining operators on these
elements (arithmetic operators like =, �=, <, >, ≤, ≥, and temporal operators
as introduced in [31] like before, overlaps, during). A smart way to realize
this referencing is an explicit mapping of constraint variables to elements of the

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 225

registration for holiday
tent camping

recruit ing addit ional
youth group leaders

start ing
registrat ion

registrat ion
finished

registration l ist:
number_of_participants

number_of_youth_leaders

C1: number_of_ youth_leaders >=
 number_of_participants / 5

pause

violat ion

C1

Figure 2. Constraining the number of youth group leaders in relation to the number of partici-
pants with a value constraint.

process model via constraint connectors [32]. The advantage of this approach is
the possibility to use domain independent and replaceable constraint solvers.

In the following section we will show examples for constraints in business
process models. Examples of different constraint classes, constraint relations and
operators are given.

4. Examples

In this section constraint examples are embedded in business processes modeled
as event driven process chains (EPC) [29]. To be generally understandable the
graphical examples relate to the holiday tent camping scenario of a children’s
group from the first section of this work.

Even though natural language is the preferred representation in a customer
ready final product, in the following the relations of constraints are assumed to
be specified in a formal way (e. g. equations, inequations). Internally this is the
necessary representation processable by the computer. Later on, e. g. in a user
interface, a user-friendly and intuitive representation may be used on top of the
internal representation.

4.1. Value Constraints

These constraints relate to the instance level of a process model. They constrain
the values of the attributes of model elements which are provided as (input or
output) parameters of a process instance.

In figure 2 an excerpt of the tent camping example is illustrated, determining
the required number of youth group leaders which have to take care for the par-
ticipants, i. e. the children of the holiday tent camping. During registration the
number of participants and the number of youth group leaders are determined
from the entries of the registration list. A constraint C1 is associated with the
registration process and constrains the number of youth group leaders in relation

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach226

register part icipant

generate feedback,
inconsistent process model

start ing register
part ic ipant

registration of
part icipant f inished

registration values:
ful l_registrat ion_amount = 25

regist rat ion_amount = {5, 10, 25}

violat ion

cancel

part ic ipant:
part ic ipant_type =

{1 , 2 .5 , 5 }

C2: registrat ion_amount =
 full_registration_amount / participant_type

C2

Figure 3. Value constraint determining the registration amount for different classes of partici-
pants.

to the number of participants. If the constraint is violated (this means the number
of registered youth group leaders is too low) the registration process is paused and
another process for recruiting additional youth group leaders is triggered. The
origin registration process is continued when this recruiting process is finished.
Notice that we assume, that the constraint has access rights for all the data the
process also has access rights for.

Another example of a value constraint is illustrated in figure 3. It contains
the process of the registration of a single participant. The constraint C2 is used to
determine the particular registration amount for different classes of participants
(incl. youth group leaders): A participant has a specific type representented by
a numeric value in the attribute participant type. For example a child is rep-
resented by the value 1, a youth by the value 2.5 and a youth group leader by
the value 5. If a concrete participant is to be registered, the concrete value is
fixed either to 1, 2.5 or 5. In other words the domain of the constraint variable
participant type is reduced to a single value. This reduction leads to another
domain reduction: If the constraint C2 is propagated the value for the concrete reg-
istration amount is determined. So the value of the variable registration amount
for a child is 25, for a youth it is 10 and for a youth group leader it is 5 after the
propgation of the constraint.2 As a result we can say constraints allow compact
modelings of decision processes to determine specific values in process models at
runtime.

Notice that besides this calculation of a concrete registration amount the
constraint in figure 3 is used for QA reasons: If for any reason the constraint
is violated, that means there are no compatible values in the domains of the
constraint variables to fulfill the constraint, this indicates an inconsistent process

2The amount for youth group leaders is lower than for the children in this scenario, because
their work is to supervise the other participants. They are assisted by the youth, who also look
after the children and whose amount is lower, too.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 227

grant request
for part icipant

generate feedback,
inconsistent process model

start ing grant
request

grant request
finished

grant request values:
grant_factor = 0.2

grant_amount = {1 , 2 , 5}

C3: grant_amount =
 registration_amount * grant_factor

violat ion

cancel

registration values:
regist rat ion_amount = {5, 10, 25}

C3

Figure 4. Using constraint propagation of value constraints to determine the grant amount per
participant.

model and by this a modeling failure. The constraint may be used to generate
user feedback in this case. The origin process has to be canceled.

In figure 4 the process of a grant request for a single participant is shown. In
combination with the constraint example in figure 3 the propagation of a domain
reduction over different constraints and processes can be observed: The constraint
C2 in figure 3 reduces the domain of registration amount to a single value when
a concrete participant is registered. This domain reduction is propagated by the
constraint C3 in figure 4 by using a given grant factor to determine the granting
for different participants. If the participant is a child (registration amount: 25),
then the grant amount is propagated to 5. For a youth (registration amount: 10)
the grant amount is propagated to 2, and for a youth group leader (registration
amount: 5) the grant amount is propagated to 1 in this example.

Notice that the constraint C3 cancels the execution of the origin process in
case of a constraint violation. So as C2 the constraint C3 is used for QA reasons,
too, and it may generate a user feedback if the constraint is not fulfilled.

Another variant of a value constraint is illustrated in figure 5. In the scenario
of a summer holiday tent camping the bottled water in stock is an important
resource avoiding thirsty children. In the example a resource constraint C4 is used
to check the number of available boxes of bottled water. Possible values are in
the (closed) interval between 0 and 20. If the number of available boxes of water
bottles is equal to or below a specific value (here: 3), then an ordering to the local
beverage supplier has to be initiated. The origin process has to be continued.

The resource related constraint C4 in figure 5 is a “global” constraint, valid
during almost the whole scenario. It has to be continuously checked during the
process perform holiday tent camping and all of its sub-processes.

4.2. Model Constraints

Another sort of constraints in business processes is the category of model con-
straints. They are related to model elements and therefore the structure of a

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach228

perform hol iday
tent camping

order new boxes with
bott led water

preparations
finished

tent camping
finished

foodstuff and soft drink report:
bott led_water_boxes = [0..20]

C4: bott led_water_boxes >= 3

violat ion

continue

C4

Figure 5. Example for a resource related value constraint, triggering an ordering action.

swimming

ensure no swimmers are in
the water anymore

ready for
swimming

swimming
finished

C5: NUMBER_OF_ORGANIZATION_UNITS
 (swimming_attendant) >= 2

violat ion

cancel

swimming
at tendant

swimmersswimming
at tendant

C5

Figure 6. Model constraint ensuring a minimum number of swimming attendants taking care
for the swimming children.

process model. Therefore model constraints relate to the conceptual level in pro-
cess modeling. According to this it is necessary to reference characteristics and
properties of model elements by model constraints. These properties include the
following elements related to a specific process:

• number and type of (input/output) parameters
• number of processes (e. g. sub-processes or a section between specific ele-

ments) and type of processes
• number and type of used documents/data resources
• number and type of involved organizational units

Considering the holiday tent camping scenario in figure 6 an example of a
model constraint is given. An operator NUMBER OF ORGANIZATION UNITS is used to
get the number of associated swimming attendants, taking care for the swimming
children. There is a minimum number of 2 swimming attendants necessary, so the

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 229

build up
ki tchen tent

ki tchen tent
unloaded

C6: "build up kitchen tent" BEFORE "positioning fridge"

continue

posit ioning
fr idge

fr idge
posit ioned

. . .

pause

C6

Figure 7. Temporal constraint determining the sequential ordering of processes.

constraint C5 is not violated. If the number of associated swimming attendants
in the process model is below this value, then the swimming process is canceled
and a new process is started to ensure no swimmers are in the water anymore.

Model constraints are usually applied for QA reasons. The modeled knowledge
is redundant with the existing information in the process model. The constraint is
specified by the modeler to ensure a specific relation holds in the current revision
and in future revisions of the process model. In this way future revisions of the
process model will be consistent with the knowledge explicitly modeled by the
constraint.

In figure 6 the number of swimming attendants is ensured by the constraint
C5. In figure 2 the constraint C1 determines the number of youth group leaders.
While C1 is a value constraint (instance level) the constraint C5 is a model con-
straint (conceptual level). The difference is that C1 refers at runtime to a value of
a data resource (registration list). The constraint C5, in contrast, refers to
the modeled organization units in the process model.

4.3. Temporal Constraints

Temporal constraints are a specific form of value constraints related to temporal
aspects at the instance level of a process model. With temporal constraints tech-
niques known from temporal reasoning using constraint propagation can be ap-
plied to business processes. The temporal constraint satisfaction problem (TCSP)
is used for planning and scheduling and uses its own temporal logic to represent
temporal relations [31]. In our approach temporal constraints are used for flow
control instead for scheduling.

In figure 7 a temporal constraint supporting the process engine managing
the control flow is shown. The temporal operator before ensures that a specific
process has to be finished before another process may start. In figure 7 regarding
the tent camping scenario the constraint C6 ensures, that the positioning of the
fridge in the kitchen tent is not able to start until the kitchen tent is completely
built up. Otherwise, if the process engine is going to start the positioning process
(this means the constraint is violated), the positioning process is paused, the
process to build up the kitchen tent is continued. A reporting or feedback is not
necessary in this example.

In a simple sequential ordering as in the example in figure 7 the constraint
may be be added for QA reasons. Making those semantic dependencies explicit
with constraints will avoid incorrect process models in the future. In particular
this affects process models which are often modified and/or which are modified
by different process modelers.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach230

order
electr ici ty

fi l l and
turn on fr idge

C7: "order electricity" BEFORE
 "f i l l and turn on fridge"

pause

continue

. . .

. . .

. . .

. . .

. . .

C7

Figure 8. Constraining the control flow in a concurrent situation with a temporal constraint.

Another example of a temporal constraint is illustrated in figure 8. The control
flow in this example is split at the AND operator. Therefore we have a concurrent
situation. Using a temporal constraint allows to determine the execution time of
processes in parallel branches of the process model. The before operator may
also be used here to prevent a process to start before another process has ended.
In the example the constraint C7 ensures the fridge will not be filled and turned
on until electricity is ordered. The ordering process is continued in either case.
The process of filling and turning on the fridge is paused if the ordering process
is not finished yet.

5. Discussion

Decision support in BPM can be achieved by the widely used business rules or
by constraint-based approaches. Assuming control knowledge explicitly modeled
with graphical process models is more intuitive to the user and has a significant
better maintainability than declarative approaches, we propose to enhance process
models with constraints instead of rules. The enhancement of business processes
with constraints as declarative mechanism avoids the lack of separation between
domain knowledge and control knowledge. Constraints allow to use the process
engine exclusively for defining the control strategy.

5.1. Constraints and Processes: “Graphical” Rules?

The presented approach and the given examples may let guess someone that con-
straints in combination with business processes is like using rules “graphically”:
The constraint seems to be the condition part and the process to be executed in
case of a constraint violation seems to be the action part of a rule. The difference
is that rules would capture the control flow from the process engine. In our ap-
proach in contrast the process engine resumes the control flow if a constraint is
violated. If constraints in combination with processes are used like business rules
with a significant effect on the control flow, they should be used as careful as
business rules: limited application with sense of proportion and only in local con-
texts. Furthermore the usage of constraints as a replacement or “simulation” of
business rules is only one aspect of the application of constraints in combination
with business processes. In addition the classical inferences and the field of QA
are grateful fields for the application of constraints in the area of BPM.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 231

5.2. Constraints versus Rules

The usage of rules differs generally from the usage of constraints. While rules
contain a condition part and an action part (which is executed when the condition
part is fulfilled) a constraint is assumed to always hold. In that it can be observed
that a rule has a direction while a constraint is non-directional. Also with respect
to the model elements and attributes related by a rule there is clearly a direction
defined: The attributes of elements related in the condition part of a rule have a
direct effect on the model elements related in the action part, but not automat-
ically vice versa. This is generally different for constraints: Here the constraint
solving algorithms check if the relation defined by the constraint still holds or
not. A binary constraint e. g. is checked for both constraint variables, so there we
have a birectional evaluation of the constraint and also bidirectional effects on
the model elements. For n-ary constraints there will be a n- or multi-directional
evaluation.

Another difference between rules and constraints is the fact that rules are
usually executed only one time while constraints have to be checked permanently
for violations. Furthermore constraints are really a declarative formalism because
they are totally free of control structures. The ordering for checking constraints
is not relevant for the result (black box). This is an important benefit which
got the respective appreciation practice, e. g. in the domain of knowledge-based
configuration: “The knowledge engineer is relieved from thinking about evaluation
of a constraint. Even the dependencies between several restrictions are considered
by the constraint net. This is a great advantage over rule-based systems.” [33].

5.3. Applying Constraints in Which Contexts?

In general the application of constraints is reasonable if (1) multiple elements are
in relation to each other, (2) there exist alternative values in the value domains of
these elements, and (3) these alternative values may be reduced by propagation so
we can get a domain reduction and thus a problem reduction as result. Examples
related to business processes where this aspects come together may be found in
section 4.

Constraints should rather not be applied if an aspect has to be checked only
one time and this checking results in an concrete control decision. This work may
be better done by a business rule. Constraints are an adequate technique if checks
have to be done permanently, e. g. during the execution of a complex business
process (and all of its sub-processes).

Also constraints should not be used if the same aspect can be modeled as
a simple decision using the respective control flow operators in a process model.
Constraints however allow compact modelings of decision processes to determine
specific values in process models. They are well-suited to model complex decisions
and relations over multiple processes. Rules in contrast should be applied limited
and only in local contexts. They are suited to represent heuristic knowledge, which
is executed only one time.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach232

5.4. Complexity

The above differences between rules and constraints result in a higher complexity
of the constraint technology. Because of this constraint-based systems are often
criticized to be inefficient managing large constraint nets. Despite there exist a
couple of efficient (i. a. heuristic) algorithms handling different kinds of constraint
problems the fact is less relevant in this case at all. In the BPM approach de-
scribed in this paper the focus is on the control flow in process models managed
by a process engine. Constraints are used additional to BPM techniques. So there
is less the problem of complexity of constraints as in the useful enhancement of
BPM with constraints. In contrast to constraint-based systems, where constraints
are the sole knowledge representation technique, supporting BPM we have only
simple constraints. Also the complexity of the constraint net is about a manage-
able size, because the control flow is mostly determined by the process model.
The constraint technology is used to provide a flexible way to react on viola-
tions of know limitations and restrictions and thus supporting the process engine
executing the process model.

5.5. Declarativity

A point of critique often heard concerns the declarative paradigm, constraint
technology is based on. Constraints are a declarative form of knowledge repre-
sentation, which is often not intuitive and transparent to users thinking in proce-
dural categories. Here also holds the above argument, that constraint technology
is just enhancing process models in BPM. Different from pure constraint-based
systems the control flow is defined procedural by process models. Constraints
(with limited scope for example) provide an intuitive way to define restrictions
and limitations directly (e. g. graphically) inside a procedural process model, not
stated “standalone” as an abstract and declarative constraint problem. Processes
triggered in case of constraint violations are directly executed by the process en-
gine. So constraints are a flexible and declarative formalism, allowing powerful
shortenings in process models without taking control from the process engine. But
like any other knowledge representation constraints should be used with sense of
proportion, excessive usage is not suggested.

To get the point, business rules and enlarged rule bases will lead to main-
tainability problems. Rules are flexible, but intransparent. Because of the declar-
ativity of rules it is not stated explicit at which time a rule is executed and so
the control flow is not intuitive clear. In BPM the control flow is stated explicit
in process models. Enhancing these process models with constraints provides a
dynamic and declarative component without defining control knowledge outside
the process model.

6. Related Work

This paper proposes the application of constraint satisfaction to ensure the con-
sistency of relations in business processes. Related work to this approach therefore

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 233

may be found in the domain of constraint satisfaction [26,27]. Existing constraint
satisfaction approaches may be employed to achieve the goals outlined in this
paper.

In [34] the definition of the open constraint satisfaction problem ist given,
a branch of constraints research related to distributed CSP and collaborative
agent environments. An additional set of constraints is used to capture external
information. An example scenario is given, illustrating the application in business
process modeling in distributed environments, where a constraint solver does not
necessarily know any of the external constraints held by other agents. The author
then sets the research agenda identifying some important research areas in open
constrained optimization research. In [35] the open constraint satisfaction model
is used for distributed scheduling. On distributed CSP many studies are available
in research literature [36].

The authors in [37] show their idea how to extend EPC diagrams with con-
straints in distributed environments. They introduce a new model element called
process module to encapsulate single functions or sub-processes separated from
the surrounding process. Process modules are used to hide process information
of different corporations in collaborative business environments. They may be
enhanced by pre- and postconditions, which are to be modeled like additional
events. A constraint is associated with a nondirectional edge to a process mod-
ule. Constraints are used to document the limitations during the execution of
functions and sub-processes covered by a process module.

Temporal constraints are introduced by [31]. The syntax and semantics of
temporal operators is specified. These operators are used to define (constraint-
)relations over time intervals. A constraint propagation algorithm is presented to
propagate temporal constraints. A survey over different representations of time
and basic techniques is given in [38]. The application of temporal constraints in
BPM is presented in [39], where the modeling and execution framework for busi-
ness processes with the focus on scheduling constraints is specified. Business pro-
cesses are modeled as a business process constraint network using temporal con-
straints to define the relations between different tasks. All tasks are represented
by time intervals. Tools with integrated temporal constraint networks already
exist, e. g. as workflow management systems [40].

An approach combining business rules and constraint techniques is presented
in [41]. Business rules has to be formulated as statements in Rules2CP, a general
purpose rule-based modeling language [42]. These business rules are translated
into constraint programs, which can be efficiently tackled by constraint solvers.
The aim is to make constraint programming technology easier to use by non-
programmers and without deep understanding of the underlying technology. This
is also in the focus of OpenRules [43], a Business Decision Management System
combining the usage of rules and constraints: In [44] a constraint-based approach
for the implementation of rule engines is presented that is able to execute rule-
based decision models. Business users may use their favorite interfaces like Excel-
based decision tables or BRMS rule editors. The developed Rule Solver generates
a constraint satisfaction problem from this decision model and solves it with the
same results as using a rule engine. Additionally it will generate solutions when
business rules only partially define a problem.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach234

There exist other approaches combining constraints and rules: In [45] con-
straints are used for the verification of rule programs. In contrast in [46] rules are
used to define a control strategy for the evaluation of constraints.

7. Conclusion & Outlook

Business processes often use BRMS for decision support. Even business processes
defined and controlled exclusively by business rules are common. In large system
approaches using a sole declarative knowledge representation technique introduces
serious problems. In BPM we suggest to model the control strategy explicit and
as exclusively as possible as process models. Modeling with graphical process
models is more intuitive and will result in a significant better maintainability than
modeling declarative and compact representations, e. g. in form of decision tables.
Process models may be supported by business rules for local decisions, but rules
should not be used for global control. Using rule-based approaches introduces
some serious problems, because rules contain domain knowledge as well as control
strategy. Rules are declarative, weakly structured and difficult to manage and
maintain. For large rule bases the user can not be sure if the problem is completely
covered by the rules, modifications often result in unwanted consequences.

Instead of rules we propose a constraint-based approach. Constraints also
have a declarative paradigma but avoid the lack of separation between domain
knowledge and control strategy. Constraint solvers used as black box by a process
engine will merely compute an output based on the given domain knowledge
and return these as new input for the process engine. A constraint solver will
give control as soon as possible back to the process engine. The process engine
exclusively has to decide how to proceed. So constraints support a process engine
without competing for the control strategy.

The challenges of this approach lies in the useful enhancement of BPM with
constraint technology. This requires the specification of an appropriate API con-
taining a constraint language to reference business process model elements defin-
ing relations on them. Furthermore constraints are an alternative for the business
rules approach. The weakness of the widely used business rules can be moderated
by constraint technology and respectively enhanced by constraints. So enhancing
BPM with constraints may lead to process models containing both, constraint
technology and also rules each in adequate contexts. Another field of application
for constraint technology in BPM is the area of QA. Known dependencies in pro-
cess models can be made explicit by additional constraints supporting further
revisions by ensuring consistent modelings. Further research has to be done with
respect to process hierarchies, the scope of constraints, the integration of solutions
of sub problems, and meta constraint solving.

The next steps will be the preparation of case studies and examples for the
application of constraint technology in BPM practice. This should preferably
be supported by practitioners and experts in selected fields. The intention is to
generate more input for requirements relevant in practice.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 235

Acknowledgment

The author would like to thank Werner Kober and Petra Burmester for useful
discussions and comments and Elke Pulvermüller for advice and detailed feedback.

References

[1] J. L. G. Dietz, “On the Nature of Business Rules,” in Proc. CIAO!/EOMAS 2008, ser.
LNBIP, J. L. G. Dietz, A. Albani, J. Barjis, W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J.
Shaw, and C. Szyperski, Eds., no. 10. Springer, 2008, pp. 1–15.

[2] W. M. P. v. d. Aalst, A. H. M. t. Hofstede, and M. Weske, “Business Process Management:
A Survey,” in Proc. BPM 2003, ser. LNCS, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and M. Weske, Eds., no. 2678. Springer, 2003, pp. 1–12.

[3] P. Harmon, “Business Process Management: Today and Tomorrow,” in Proc. BPM 2008,
ser. LNCS, M. Dumas, M. Reichert, and M.-C. Shan, Eds., no. 5240. Springer, 2008, pp.
1–1.

[4] P. Gilbert, “The Next Decade of BPM,” in Proc. BPM 2010, ser. LNCS, R. Hull,
J. Mendling, and S. Tai, Eds., no. 6336. Springer, 2010, pp. 1–4.

[5] W. Bandara, P. Harmon, and M. Rosemann, “Professionalizing Business Process Manage-
ment: Towards a Body of Knowledge for BPM,” in BPM Workshops, BPM 2010 – Revised
Selected Papers, ser. LNBIP, M. Muehlen, J. Su, W. Aalst, J. Mylopoulos, M. Rosemann,
M. J. Shaw, and C. Szyperski, Eds., no. 66. Springer, 2011, pp. 759–774.

[6] J. McDermott, “R1: A Rule-Based Configurer of Computer Systems,” Artifical Intelli-
gence, vol. 19, no. 1, pp. 39–88, Sep. 1982.

[7] W. P. Birmingham, A. Brennan, A. P. Gupta, and D. P. Sieworek, “Micon: A Single Board
Computer Synthesis Tool,” IEEE Circuits and Devices Magazine, vol. 4, no. 1, pp. 37–46,
Jan. 1988.

[8] M. Golden, R. Siemens, and J. C. Ferguson, “What’s Wrong with Rules?” in Proc.
WESTEX-86, G. S. Robinson and M. S. Cook, Eds. IEEE Computer Society Press, 1986,
pp. 162–165.

[9] E. Soloway, J. Bachant, and K. Jensen, “Assessing the Maintainability of XCON-in-RIME:
Coping with the Problems of a VERY Large Rule-Base,” in Proc. AAAI-87. AAAI Press,
1987, pp. 824–829.

[10] V. Barker and D. O’Connor, “Expert System for Configuration at Digital: XCON and
Beyond,” Communications of the ACM, vol. 32, no. 3, pp. 298–318, Mar. 1989.

[11] D. Sabin and E. C. Freuder, “Configuration as Composite Constraint Satisfaction,” in
Configuration – Papers from the AAAI Fall Symposium, B. V. Faltings and E. C. Freuder,
Eds. AAAI Press, 1996, pp. 28–36.

[12] D. Sabin and R. Weigel, “Product Configuration Frameworks – A Survey,” IEEE Intelli-
gent Systems, vol. 13, no. 4, pp. 42–49, Jul./Aug. 1998.

[13] J. McDermott, “R1: The Formative Years,” The AI Magazine, vol. 2, no. 2, pp. 21–29,
1981.

[14] P. Harmon, “How DEC is Living with XCON,” Expert Systems Strategies, vol. 5, no. 12,
pp. 1–5, 1989.

[15] B. Neumann, “Configuration Expert Systems: a Case Study and Tutorial,” in Artificial
Intelligence in Manufacturing, Assembly and Robotics, H. O. Bunke, Ed. Oldenbourg
Verlag, 1988, pp. 27–67.

[16] A. Günter and R. Cunis, “Flexible Control in Expert Systems for Construction Tasks,”
Applied Intelligence, vol. 2, no. 4, pp. 369–385, 1992.

[17] J. Bachant, “RIME: Preliminary Work toward a Knowledge-Acquisition Tool,” in Au-
tomating Knowledge Acquisition for Expert Systems, S. Marcus, Ed. Kluwer Academic
Publishers, 1988, ch. 7, pp. 201–224.

[18] P. Jackson, Introduction to Expert Systems, 3rd ed. Addison-Wesley, 1998.
[19] S. J. Russel and P. Norvig, Artificial Intelligence: A Modern Approach (The Intelligent

Agent Book), 2nd ed. Prentice Hall, Dec. 2002.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach236

[20] C. L. Forgy, “RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem,” Artificial Intelligence, vol. 19, no. 1, pp. 17–37, Sep. 1982.

[21] IBM WebSphere ILOG JRules. [Online]. Available: http://www-
01.ibm.com/software/websphere/ilog/

[22] BOSCH Software Innovations Visual Rules. [Online]. Available: http://www.visual-
rules.com/

[23] Red Hat JBoss Enterprise BRMS. [Online]. Available:
http://www.jboss.com/products/platforms/brms/

[24] Jess. [Online]. Available: http://www.jessrules.com/
[25] JSR-94: Java Specification Request for a Java Rules Engine API. [Online]. Available:

http://www.jcp.org/en/jsr/detail?id=094
[26] E. P. K. Tsang, Foundations of Constraint Satisfaction. Academic Press, 1993.
[27] R. Dechter, Constraint Processing. Morgan Kaufmann Publishers, 2003.
[28] JSR-331: Java Specification Request for a Constraint Programming API. [Online].

Available: http://www.jcp.org/en/jsr/detail?id=331
[29] A.-W. Scheer, ARIS – Business Process Modeling, 3rd ed. Springer, 2000.
[30] M. Fowler, Domain-Specific Languages, 1st ed. Addison-Wesley, 2010.
[31] J. F. Allen, “Maintaining Knowledge about Temporal Intervals,” Communications of the

ACM (CACM), vol. 26, no. 11, pp. 832–843, Nov. 1983.
[32] W. Runte and M. El Kharbili, “Constraint Checking for Business Process Management,”

in Proc. INFORMATIK 2009, ser. LNI, S. Fischer, E. Maehle, and R. Reischuk, Eds., no.
154. GI, Sep. 2009, pp. 4093–4103.

[33] M. Kopisch and A. Günter, “Configuration of a Passenger Aircraft Cabin Based on Con-
ceptual Hierarchy, Constraints and Flexible Control,” in Proc. IEA/AIE-92, ser. LNCS,
F. Belli and F. Radermacher, Eds., no. 604. Springer, 1992, pp. 421–430.

[34] E. P. K. Tsang, “Constraint Satisfaction in Business Process Modelling,” The Journal Of
Management and Economics, vol. 7, no. 7, Nov. 2003.

[35] E. P. K. Tsang, T. Gosling, B. Virginas, C. Voudouris, G. Owusu, and W. Liu, “Re-
tractable Contract Network for Empowerment in Workforce Scheduling,” Multiagent and
Grid Systems, vol. 4, no. 1, pp. 25–44, Jan. 2008.

[36] M. Yokoo and K. Hirayama, “Algorithms for Distributed Constraint Satisfaction: A Re-
view,” Autonomous Agents and Multi-Agent Systems, vol. 3, no. 2, pp. 185–207, Jun.
2000.

[37] R. Klein, F. Kupsch, and A.-W. Scheer, “Modellierung inter-organisationaler Prozesse mit
Ereignisgesteuerten Prozessketten,” in Veröffentlichungen des Instituts für Wirtschaftsin-
formatik, A.-W. Scheer, Ed. Institut für Wirtschaftsinformatik, Nov. 2004, no. 178.

[38] J. F. Allen, “Time and Time Again: The Many Ways to Represent Time,” International
Journal of Intelligent Systems, vol. 6, no. 4, pp. 341–355, Jul. 1991.

[39] R. Lu, S. Sadiq, V. Padmanabhan, and G. Governatori, “Using a Temporal Constraint
Network for Business Process Execution,” in Proc. ADC 2006, ser. CRPIT, G. Dobbie
and J. Bailey, Eds., no. 49. Australian Computer Society, 2006, pp. 157–166.

[40] M. Reichert, S. Rinderle, and P. Dadam, “ADEPT Workflow Management System,” in
Proc. BPM 2003, ser. LNCS, W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske,
Eds., no. 2678. Springer, 2003, pp. 370–379.

[41] F. Fages and J. Martin, “From Rules to Constraint Programs with the Rules2CP Mod-
elling Language,” in Proc. CSCLP 2008, ser. LNCS, A. Oddi, F. Fages, and F. Rossi, Eds.
Springer, 2009, no. 5655, pp. 66–83.

[42] Rules2CP Modeling Language. [Online]. Available: http://contraintes.inria.fr/rules2cp/
[43] OpenRules. [Online]. Available: http://openrules.com/
[44] J. Feldman, “Representing and Solving Rule-Based Decision Models with Constraint

Solvers,” in Proc. RuleML 2011, ser. LNCS, F. Olken, M. Palmirani, and D. Sottara, Eds.
Springer, 2011, no. 7018, pp. 208–221.

[45] B. Berstel and M. Leconte, “Using Constraints to Verify Properties of Rule Programs,”
in Proc. ICST 2010. IEEE Computer Society, Apr. 2010, pp. 349–354.

[46] Y. Caseau, “Constraint Satisfaction with an Object-Oriented Knowledge Representation
Language,” Applied Intelligence, vol. 4, no. 2, pp. 157–184, 1994.

W. Runte / Enhancing Business Process Management with a Constraint-Based Approach 237

